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ON ENDOGENOUS COMPETITIVE BUSINESS CYCLES#¥

by

Jean-Michel GRANDMONT

The belief that the long run equilibrium of a competitive monetary
economy that does not experience any exogenous shocks - whether origi-
nating from the external environment or from policy ~ should be modelled
as a state that is stationary or perhaps growing at a constant rate,
seems to be deeply rooted in the mind of economists.

The most oubtspoken believers in the market's invisible hand go
indeed as far as claiming that any departure from a long run Walrasian
equilibrium should be regarded as purely transitory and that accordingly
the basic tendencies of a competitive econony may be represented
adequately by such a "Classical" stationary equilibrium. The most

recent reforrmilation of the Classical approach has been to model
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economic fluctuations by adding random shocks to the deterministic
stationary state and to underscore the role of incomplete {(and
asymmetric) information in the influence of economic policy on real
equilibrium variables. The outcome of this reformlation is a model
that preserves very cleverly stationarity while incorporating in the
analysis something that looks like business cycles (Barro [1981],
Kydland and Prescott [1982], Lucas [1972, 1975, 1977, 1980, 1981],
Sargent and Wallace [1975])r}j An important implication of many, but
not all, of these models is that the systematic (deterministic)
component of economic policy can have no real effect whenever it is
anticipated by the private sector.

The arguments put forward by the opposing (Keynesian) school
appear often, by contrast, almost exclusively defensive. Proponents of
this school seem to accept in effect the theoretical validity of the
claim according to which the long run equilibrium positions of a
competitive economy may be described by (deterministic or stochastic)
stationary states. They tend to question primarily the practical
relevance, for the description of short run and medium run phenomena, of
the mere notion of a long run stationary equilibrium and of its under-
lying assumptions. The list is long: prices cannot move fast enough to
clear markets, anticipations adjust only slowly, New Classical macro-
economic models rely upon extremely specific assumptions concerning the
distribution of information, the Classical stationary state may be
unstable or convergence to it may be so slow that it becomes practically

irrelevant in calendar time, and so onrg/



The'purpose of this work is to demonstrate that, by contrast to
currently accepted views, a competitive monetary economy of which the
environment is stationary may undergo persistent and large deterministic
fluctuations under laisser faire. That these cyclical fluctuations may
display moreover the sort of correlations that recent Classical macro-
economic models have seeked to incorporate, without having to make the
ad hoc assumption that cycles are due to exogenous shocks. And finally,
that the Government, in the face of such autonomous deterministic
fluctuations, has indeed in principle the power to stabilize the economy
by implementing simple deterministic - and publicly known -~ counter-
cyclical policies.

Although one of the goals of the present work is to develop
concepts and methods that can be applied, it is hoped, to a larger class
of situations, the analysis will proceed by studying a particular
example, i.e., an overlapping generations model very much alike the
model developed by R. J. Lucas in his seminal paper [1972], with the
noticeable difference that we shall assume that the economy is not
subjected to any shock of any sort. Business deterministic cycles will
be shown to appear in a purely endogenous fashion under laisser faire.
Markets will be assumed to clear in the Walrasian sense at every date,
and traders will have perfect foresight along the cycles.

The origin of these endogenous deterministic cycles will be seen
to be the potential conflict between the wealth effect and the inter-
temporal substitution effect that are associated to real interest rate

movements. Business cycles will emerge in particular when the degree of
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concavity of a trader's utility function - which we shall measure,
although there is no uncertainty in the model, by the so-called Arrow-
Pratt "relative degree of risk aversion" - is sufficiently higher for
old agents than for younger ones.éj An important outcome of the analysis
will be that cycles of different periods will typically coexist -
in some cases, there may be a countable number of these. The techniques
employed to study the occurrence and the stability of such business
cycles will be borrowed partly from recent mathematical theories that
have been constructed by using the notion of the "Hopf's bifurcation" of
a dynamical system in order to explain the emergence of cycles and the
transition to turbulent ("chaotic") behaviour in physical, biological or
ecological systens.ﬂj

The equilibrium level of output will be shown to be negatively
related to the equilibrium level of the real interest rate. A similar
relation exists (but in the opposite direction) between equilibrium real
money balances and real interest rates. The relations hold both in the
long run, i.e., along business cycles, and in the short run, i.e., on
the transition path, and whether movements of the real interest rate are
anticipated or not. The basic ingredient there will be is the condition
that older agents have a higher marginal propensity to consume leisure.

Finally, monetary policy by means of nominal interest payments
will be shown to be extremely effective. A permanent change of the rate
of growth of the money supply by these means will be seen to be
superneutral. Yet, it will be shown that there exists a very simple

deterministic countercyclical policy that enables monetary authorities



to stabilize completely business cycles and to force the economy back to
the unique (Golden rule) stationary state. Due to the nonlinearity of
the model, such a policy affects not only the variances of real
equilibrium magnitudes but also their means. The central point here is
that there are typically many long run periodic equilibria that coexist
under laisser faire, and that policies may be designed which force the
economy to settle at only one of these - here the stationary state.éj

The paper is organized as follows. We specify in Section 1 the
structure of the model and study there the traders' microeconomic
behaviour. The dynamic system describing the evolution over time of the
econony as well as long run periodic equilibria are defined in Section
2., The issue of the stability of these periodic equilibria is partly
analysed in Section 3. The existence, the mltiplicity, and the bifur-
cations of periodic competitive equilibria are investiaged system-
atically in Section 4. The long run and short run relationships between
equilibrium output or real balances, and anticipated or unanticipated
real interest rates are established in Section 5. Finally, the impact
of monetary policy through deterministic money transfers is dealt with
in Section 6. A few concluding remarks are given in Section T, while
some proofs are gathered in a separate Appendix.

Section 4 is the most technical, and although it is in some
respects the most interesting one, the nonmathematically oriented reader
may skip it on a first reading. Section 5, and to a large extent,

Section 6, can be read right after the first two sections of the paper.
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1. Behavioral Assumptions

We shall use the simple structure of an overlapping generations
model, with a constant population and without bequests, in which agents
live two periods only. For simplicity we shall assume that all agents
are identical, or equivalently that there is a single member in each
generation. There will be accordingly two agents in every period, one
"young" and one "0ld". The model involves one perishable consumption
good, which is produced from the labour that is supplied by consumers.
There is no production lag, and producing one unit of output requires
one unit of labour. Young consumers have the opportunity to save part
of their income in each period by holding a nonnegative money balance.
For the most part of the paper, the money stock will be assumed to be
constant over time. It will be denoted M > 0.

At each date t, there are competitive spot markets for the
consumption good, for labour and for money. The money price of the good
and the money wage rate will be denoted Py and Wy s respectively.
However, in equilibrium, a positive amount of the good is consumed and
therefore produced (think of the old agent who has a positive money
balance to spend on the good market at every date). Profit maximization
in the production sector implies then the equality of the equilibrium
real wage and the equilibrium marginal productivity of labour, which is
unity. This fact allows focusing attention on the case in which
P, =W, for all t, without any loss of generality.

An agent's intertemporal characteristics may then be described as

follows. Consumption . in each period T of his life (r = 1,2)



must be nonnegative. On the other hand, it is assumed that the agent
has a labour endowment in each period of his life, 2:, and that his
labour supply £_, or equivalently his consumption of leisure £¥ - QT,

T
mist satisfy O < l: - ZT

A

£¥ for T =1,2. The agent's intertemporal

tastes are represented by the utility function

* *
Ul(cl, zl zl) + U2(c2, 22 22)

which is defined on the set of .y and 2¥ - 2T that satisfy the

foregoing feasibility constraints. We shall assume

* *
(1.a) 21 >0 and 22 >0

(1.b) Ur(cr’ zﬁ = RT) is continuous, increasing in each argument and

strictly concave for 1 = 1,2,

We consider now the decision problem that a young agent has to
solve at an arbitrary date. Let p > 0 be the money price of the good
that he observes in the current period and let pe > 0 be the price
that he expects for the next date (the reader is reminded that current
and expected money wages are taken to be equal to p and pe
respectively). The agent's problem is then to choose his current
consumption ¢4, his current labour supply Zl’ his demand for nominal
money m, and to plan for the next date his future consumption co and

labour supply £ Formally,

2.
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Choose Cq5 21, m, Chs 22 so as to maximize
* _ * _
Ul(cl’ 21 ll) + U2(c2, 22 22) subject to c_ > 0,

0 < lT < 2¥ (t=1,2), m > 0 and the current and

(1.1) expected budget constraints

- £ =
ple 1) +m=0

1
e
P (c2 - 22) =m

It is routine to verify that under Assumption (1l.b), this problem
has a unique solution. It is moreover clear that the optimum values of
(cT - lT) for T =1,2 are unchanged whenever current and expected
prices are changed proportionnally - in other words they depend only on
the ratio 6 = p/pe, or equivalently on the consumer's expected real
interest rate p = 6 - 1 (absence of money illusion). We shall denote
them zl(e) and z2(6), respectively. Since one unit of labour yields
one unit of good, we may interpret these values as the trader's current
and expected excess demands for the good. On the other hand, the
optimum value of m that arises from (1.1) - the trader's demand for
money - is clearly a function of p and of p® that is homogenous of
degree 1 with respect to these variables. The trader's demand for money
m@(p,pe) is in fact linked to the excess demand functions zl(e) and
z2(9) by the following identities, which are consequences of the budget

constraints of (1.1).
d e, .
(1.2) pz (8) + m (p,p ) =0

(1.3) pezg(e) = md(p,pe)



for every p, pe and 0 = p/pe. These identities imply of course

(1.4) Gzl(e) + z2(6) =0 for every 6 >0

One may note that the demand for "real balances", m@/p is then
given by —zl(e) = z2(9)/6.

It is convenient to decompose the decision problem (1.1) into two
subproblems. Let us rewrite the budget constraints of (1.1) under the

following form

(1.5) p[cl + (2{ - 21)] +m= pl{

(1.6) pele, + (23 - 2] = A% + m

2 2

Then it is clear that the consumer may solve (1.1) in two steps. First,
given an arbitrary m satisfying O $mg pLl¥, he may choose the
consumptions of good and of leisure in each period of his life that
maximize each utility function U,r under either the budget constraint
(1.5) when T =1, or (1.6) when T = 2. Having achieved this, the
trader may then choose the optimal level of m. This motivates

considering the following problem.

Given a2 0, choose . and 2: -2

with c¢_ >0 , 0 < 2% _ 2 < 2%
T = = T =

(1.7) so as to maximize Ur(cr’ - QT) subject to
s =
¢ ¥ (21 zr) &1

Under Assumption (1.b), (1.7) has a unique solution. In fact,
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this problem determines the agent's optimum consumption cT(aT) and his
optimum labour supply lT(ar) in each period of his life as a function

of his "real wealth" a_. These functions are linked by

* =
(1.8) cT(aT) + £T zt(aT) =a, for every a > o .

Let Vr(ar) be the maximum of U_ that is obtained in @R It
is quite easy to verify that under assumption (1.b), V. is continuous,

increasing, strictly quasiconcave. Let us consider finally

Given p >0 , pe >0 , choose >0 >0

al: & 3.2=

and m > 0 so as to maximize Vl(al) = V2(a2) subject to

pa, + m = pR¥
1 1
(1.9)

e < L Bpk
pa, =pA5+m

By comparing the budget constraints of (1.9) with (1.5) and (1.6),

it is clear that the optimum values of a, - Z;, of a, - 2% and of m

1 2 2
that result from (1.9) coincide indeed with zl(e), z2(9) and md(p,pe),
respectively.

Note that problems (1.7) and (1.9) admit a very simple graphical
representation as shown in Figure l.a and Figure l.b. The first Figure is
a direct description of (1.7) and needs no comment. Figure l.b, which

represents (1.9), is drawn in the (al,ag) -plane. The two constraints

become there the intertemporal constraint

= Q% *
eal +a, 621 + 12
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'ETI‘- ? 32.-.
/ (8,1)
? S, + 22(6) - :
? '3 ?
i-=/ i) 0 L¥ + z (8) LY "
T T T 1 1 1
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which is obtained by adding the two budget constraints of (1.9) and by
dividing the result by the expected price pe, and the liquidity
constraint a, < 2{ which expresses the fact that money balances cannot
be negative.

The main advantage of going through (1.7) and (1.9) is that such a
procedure will enable us to state our assumptions compactly and more
transparently by using the indirect utility functions Vr(ar) instead of
deriving them from the original functions UT - which would have been in
some cases quite tedious.éy

We have seen that under Assumption (l.b), each indirect utility
function VT is continuous, strictly concave and increasing. We shall

make in fact the stronger assumption:

(1.c) For each T = 1,2, the indirect utility function v, is
continuous on [0,+*) and twice continuously differentiable
on (0,+=), with V!'(a ) > 0, 1im v;(aT) = 4o, Vi(a ) < 0.
a_+0
T
We end up this section with a brief analysis of a few elementary
facts about the excess demand functions =z and 2z that will be used

1 2
repeatedly in the sequel.

Lemma 1.1: Assume (l.a) and (l.c) and let 8 = Vi(lf)/Vé(lg).
Then zl(e) and z2(9) are continuous on the open interval (0,+=).
Moreover,

1) Zl(e) = 2,(8) = 0 whenever 8 < 8, and -2% < zl(e) <0,

22(9) > 0 whenever 6 > 8

2) for every 6 > B, one has
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(1.10) Vi(zf + zl(e)) = BVé(lg + z2(6))

We shall not give a formal proof of this statement, which follows
from elementary considerations, but rather give the intuition behind it
by looking at Figure l.b. The parameter ® 1is indeed the inverse of
the marginal rate of substitution Vé(az)/Vi(al) at the endowment point
2{ is binding. The
0. If 6 > 8, the

(li,lg). If 8 < B, the liquidity constraint a,

1A

demand for money then vanishes and zl(e) = z2(6)
liquidity constraint is no longer binding - the demand for money is
positive - in which case zl(B) < 0 and z2(6) > 0, and the optimum of

(1.9) requires a, > 0 (since Vi(O) = +°), thus

0) > 1%,
1 ( ) 1

%3
Therefore at the optimum of (1.9), one must have Vi(al) = BVé(az),
hence (1.10). Note that in view of (1.4), the relation (1.10) may take

the equivalent form
(1.11) -z, (0)v (2% + z,(0)) = z,(8)VA(2% + 2,(0)) for every 6 2 6

This brief argument implies that a consumer will have a positive
demand for money if and only if 0 > 8. We shall be concerned in the
sequel with monetary competitive equilibria, where the agents have to
hold the outstanding money stock, which is positive. In order to ensure
the existence of such equilibria, it will be particularly important that
the traders have enough incentives to save when the price of the good is
constant (and is expected to be constant) over time. This case
corresponds to pe =p and thus to 6 = 1. We shall need accordingly

that 1 > 8. Formally
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B =vr(ex)Y/vr{e%x) 3
(1.4) © vl(zl)/vz(zz) is less ghan 1.

The next fact gives more information about the variation of z1

and =z with 6.

2

Lemma 1.2: Assume (l.a) and (l.c). Then the restrictions of the

excess demand functions zl(e) and z2(6) to the interval [8,+®) are

continuously differentiable. For every 6 > 8

2'(9) IVé(z; + zz(e)) + zz(e)vg(zg + zz(e))]/A

'
1

()

' Tyt (o "l g%
2 [Vl(kl + zl(e)) + zl(e)Vl(ll i Zl(e))]/A
2
. . = yn{o* "io% i
in which A vl(zl + zl(e)) + 0 V2(£2 + z2(9)) < 0. In particular

z;(e) >0 for every 68 > 8. Moreover z2(6) diverges to +® whenever

6 tends to +=,

The first part of this statement is obvious by differentiating
(1.10) or (1.11) and by using (1.4). On the other hand, the fact that
z2(9) diverges to +» whenever 0 increases without bound is not
difficult to verify. Indeed, we get from (1.4) that when 6 tends to
+oo, zl(S) mist tend to 0O if 22(9) remains bounded. But in that
case, the left hand side of (1.10) is bounded while the right hand side
diverges to +». This is a contradiction which shows that

1lim z.(8) = 4,
B>+
The foregoing analysis gives some insight about the consequences

upon a trader's behaviour of a variation of 9 (or of his "expected

real interest rate" which is given by 6 - 1). A change of 0
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generates an intertemporal substitution - through the variation of the
relative price of future and current consumption - as well as income or
wealth to 62? + 23. Lemma 1.2 states that a rise of © induces always
an increase of z2(6). Loosely speaking, this is because intertemporal
substitution and income effects do work then in the same direction. On
the other hand, the induced variation of zl(e) is ambiguous. We know
indeed from Lemma 2 that -zé(ﬁ)/zi(ﬁ) = 8. Therefore zi(g) < 0, and
thus by continuity zi(e) <0 if 6 is larger than but close enough to
8. However, the sign of zi(e) is a priori indeterminate for large
values of 0, because income and substitution effects are working in
opposite directions in such a case. As a matter of fact the origin of
the business cycles that are going to be analysed in the present paper
is precisely this potential conflict between intertemporal substitution
and wealth effects.

Examination of the expressions of zi(a) and zé(e) suggests
that an important role in this regard should be played by the so-called

Arrow-Pratt relative degrees of risk aversion
= yn '
Rr(ar) Vr(ar)ar/vr(ar)

which are well defined whenever a. > 0. These expressions measure in
effect the degree of concavity (curvature) of each VT. We shall stick
throughout to the usual terminololy and speak of "risk aversion",
although it is slightly awkward in the present context, which involves

no uncertainty. We shall use the following assumption
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(1.e) R2(a2) is a nondecreasing function of a, for every

a,. > 0.

For a justification of such an assumption (in a context involving

uncertainty) see Arrow ([1970], Ch. 3). It is then easy to get the

following fact.

Lemma 1.3: Assume (l.a) and (l.c). Then for every
8/
' i i * * i
o > 8, zl(e) < 0 if and only if 32(22 + Zz(e)) < (22 . 22(9))/22(9)-
Accordingly,

1) . 4 R2(a2) <1 for all a, > 0, then zi(e) < 0 for every

2) if (1.e) holds and if there exists a2 > 0 such that

R2(a2) > 1, then there exists a unique 6% > § such that zi(e) <0

for every @ <0 < 0%, zi(e*) 0 and zi(e) > 0 for every 6 > 6%,

The claim that zi(e) < 0 if and only if

R, (2% + 22(9)) < (2% + zz(e))/zz(e) is immediate to verify by looking
at the expression of zi(e) in Lemma 1.2, Then if R2(a2) <1 for all
a, > 0, the left hand side of this inequality never exceeds 1, while the
right hand side is always greater than 1 whenever 6 > 8, which shows
1). If (l.e) holds, the left hand side of this inequality is a non-
decreasing function of 8. When 6 tends to +=, z2(6) tends also to
+o and thus under the assumptions of 2), Rg(lg + z2(6)) exceeds 1 for

® large enough. On the other hand, (2; + 22(6))/z?(6) decreases from

+0 to 1 when 8 rises from 8 to +=. There is thus, by

continuity, a unique 6% > 8 such that
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Rz(zg + z2(e*)) = (25 + zz(e*))/z2(e*)

and it is clear that zi(e) < 0 whenever B < 0 < 0%, zi(e*) =0 and
zi(e) > 0 when 68 > 0%,

It may be useful to illustrate our findings by drawing in the
(al,az) -plane a consumer's offer curve, that is, the locus of all
points of coordinates a, = 2{ + zl(e), a, = lg + z2(6) when ©
varies. The result is shown in Figure 2 below. According to the
previous lemmas, the offer curve is smooth and goes through the
endowment point A = (2{,23) - this corresponds to 0 < 8. Its normal
there is the vector (8,1). The curve lies below the U5° line AB when
8 <6 <1, and above when 6 > 1. Figures 2.a and 2.b are drawn under
the assumption that % < 1. Of course, if ] 2 1, the curve would lie
entirely above AB. Figure l.a corresponds to the case considered in 1)
of Lemma 1.3, in which R2(a2) <1 for all a, > 1. The curve is then
"monotone", i.e., it has no critical point. Figure l.b corresponds to
the case in which (l.e) holds and in which R2(a2) > 1 for some
a5 > 0., The offer curve has then a unique critical point corresponding

to the value 6 = 0¥,

Remark: The preceding lemmas have been stated by employing the
excess demand functions Zq and Z,e The implications of these results

on the demand for real balances
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vk

Figure 2.2

=1
g =g \
g 1 \
* (8,1)
=8
‘2
0

Figure 2.b
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are obvious. Finally, note that the elasticity of the excess demand
function z,, i.e., Gzé(e)/ze(e), is greater than 1 if and only if

zi(e) > 0.

2. Periodic Competitive Equilibria

The preceding Section was devoted to rather elementary and
standard considerations about the "microeconomic" behaviour of a
consumer. We turn now attention to the study of the dynamics of the
economy and to the definition of periodic equilibria.

Since there are competitive spot markets for output, labour and
money at every date, the evolution of the economy is described by a
sequence of temporary competitive equilibria. Agents are assumed to
forecast at every date future prices through a given learning process,
during the adjustment of the economy toward "steady states" - which will
mean here periodic sequences of temporary competitive equilibria. It
will be postulated however that along such periodic sequences, traders
have "rational" expectations, i.e., that they forecast correctly the
periodic sequence of prices. This way of proceeding comes from the fact
that learning processes belong in our view to the important character-
istics of the traders on the same level as preferences, endowments and
the like, and that perfect foresight must be modelled as a property of
those learning processes in relationship to specific environments. In
particular, perfect foresight appears to be a plausible outcome of
learning when a trader's environment is repetitive enough (here

periodic), but seems to be far less acceptable out of such special
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circumstances. An other reason that justifies our approach is that we
shall study later on the stability of a long run periodic equilibrium,
and that for that purpose, taking into account that traders are learning
on the transition path is important.

Let us consider the economy at some date t. We look first at the
"61d" consumer living at t. This consumer holds the outstanding stock
of money M. If the price quoted at t is P, > 0, his problem is then

to maximize Ulc, 28 - 2) subject to c 20, 0 < A% -2 < 2% and

* . = * y
pt[c + (2% )] p 24 + M

(we have taken advantage here again of the fact that the nominal wage
rate wg mst be equal to Dy in equilibrium). In view of the problem
(1.7), the result will be cz(lg + M/Pt) and 22(2; + M/pt). But the
important point to note at this stage is that, since one unit of labour
vields one unit of output, the old consumer's excess demand for the good
may be described by c¢ - %, and that this quantity is equal to the real
value of his money stock M/pt.

Consider next the "young" consumer living at t. This consumer
observes the current price Pt’ and we assume that he knows past
prices. To simplify, we shall postulate that the consumer processes
only the current price p, and the past (positive) prices
P32 sPp to compute the (positive) price pi+1 that he expects to
prevail at the next date. In what follows, we shall think of T as
finite, but "large". We describe this "learning" process - which may bYe

a simple rule of thumb or a complicated statistical technique - by an
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expectation function

e —
Peay = V(PgsPy_yoeeesPy )

We assume that the lag T as well as the function ¢ are independent
of time.gj Thus, in view of the analysis of the preceding section, the
young trader's excess demand for the good is given by
zl(pt/¢(Pt,pt_1,...,pt_T)) while his demand for money is
mg(pt’w(pt’Pt-l""’pt-T))‘

A temporary competitive equilibrium at t 1is then defined as a

price Py > 0 such that all markets clear at that date. For the good

market, this yields
(201) zl(Pt/'p(Pt’Pt_la"',Pt_T)) + (M/pt) = 0
As for money, we get

d —
(2.2) m (Ptsq)(ptap.t_l""’pt_'r)) =M

Of course, in view of the young trader's current budget constraint
(1.2), the two equations are equivalent. This is in fact Walras's
Lawrlgj

The next assumption on the expectation function is made to
guarantee the existence of a solution Py to the above system of
equations, when past prices are given. It is there essentially to

ensure enough intertemporal substitution when the current price Py

varies.
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(2.f) The expectation function ¢ is continuously differentiable. The
elasticity of ¥ with respect to the current price is between

0 and 1, that isit/

O< ‘ LI N ] LS ] <
< wo(pt,pt_l, ,thT)pt/W(pt,pt_l, ,pt_T) S

Moreover, the ratio \IJ(pt,...,pt_T)/pt tends to O when p,

goes to +%,
We may state

Proposition 2.1: Assume (1.a) and (l.c). Then under assumption

(2.f), there exists a unique temporary competitive equilibrium price

Py given the past prices The temporary Walrasian

pt_l, * e ’pt-T'
equilibrium function so defined p, = w(pt-l""’pt—T) is continuously

differentiable.

The proof of this claim is simple. By virtue of Walras's Law, we
may focus attention on the good market equation (2.1) alone. Then when
Py goes to 0, the real balance M/pt goes to infinity while the young
consumer's excess demand for the good is hounded below by —2{. Thus we
are sure that aggregate excess demand goes to +* on the good market
when Py decreases to O. This is due to the real balance effect,
which operates on the old trader alone.

We wish now to show that an excess supply of the good appears when
its price increases without bound, or equivalently - again by Walras's
Law - that an excess demand for money appears in such a circumstance.

But that is easy if one considers the money equation (2.2) which can be
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put in the following equivalent but more convenient form by using the

young trader's expected budget constraint (1.3)

(2.3) w(pt’.'.’Pt—T)Z2(Pt/q)(pt,...’pt—T)) =M

Under assumption (2.f), ¥ and ptlw are nondecreasing functions of

P, - Moreover pt/w tends to +* when by increases without bound.

In view of Lemma 1.2, the left hand side of (2.3), that is, the young
trader's demand for money, is nondecreasing and goes to +* (and thus
exceeds the money supply M) when pt tends to +«, which proves our
claim. Here,-it is the intertemporal substitution effect that acts upon
the young trader which plays a central role«lg/

We may therefore conclude that by continuity, (2.1) admits a
solution. Unicity follows readily by considering (2.3), which is
equivalent, as we said, to (2.1). We showed that the left hand side of
(2.3) is nondecreasing. This implies either that it is positive for all
Py» OF that it is equal to O whenever Py < Et for some §t >0 and
positive otherwise. When it is positive, we may meaningfully consider
its partial derivative with respect to Py » which is given by

p, V'
q o t o
wOZQ i z2(1 " )

(we have suppressed here the arguments of the functions involved for
notational simplicity) and which is positive under assumption (2.1).
The left hand side of (2.3) is therefore increasing whenever it is
positive, which proves uniqueness. Continuous differentiability of the

temporary Walrasian equilibrium function W 1is then a consequence of
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éhe implicit function theorem by the same sort of argument. Partial
derivatives of W can be easily computed for instance by differen-
tiating (2.3)rl§/

It may be noted in addition that under the assumptions of the
proposition, the unique temporary equilibrium price pt is stable in
any Walrasian tatonnement process at date t in which prices respond
positively to excess demand.

We proceed now to the definition of periodic competitive
equilibria.

A periodic competitive equilibrium with (primitive) period k is
a sequence of temporary equilibria, that is, an infinite sequence of
positive prices (pt) that satisfies (2.1) and (2.2) for all £, such
that Piye = Py for all t and such that k 1is the smallest period of
the sequence (i.e., there is no k' < k such that pt+k' = pt for
all t).

One gets of course as a particular case a stationary equilibrium
when k = 1. We may and we shall often identify a periodic competitive
equilibrium with the orbit of the periodic sequence (pt), i.e., with
the k consecutive values (pi,...,pﬁ) that (pt) takes. This
identification supposes of course that the two orbits (pf,...,pg) and
(p;,...,pﬁ,pi,...,p§_l) are considered as equivalent.

Note that the above definition involves only the functions
zl,ze,md and ¥ which describe a trader's behaviour - it does not use
assumption (2.f). If (2.f) is postulated, the temporary equilibrium

map W is well defined and one may view a periodic competitive
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equilibrium as a periodic solution of

(20h) Pt = W(Pt_la---,Pt_T)

In fact, it is more convenient to look at (2.4) as defining a dynamic
system in a space of larger dimension. For any q_,; = (pt-l""’pt—T)’

let us consider q = w(qt—l) that is determined by

(2'5) (lt = (W(pt_l,ooo,pt_T),p_t_l""’Pt_T,'_l)

This procedure defines a function W that takes the interior of :BE
into itself, and it is clear that the equation q = W(qt—l) describes
the same dynamics as (2.4) through the relation Qg = (pt-l""’Pt-T)
for all t.

We may in particular state for later referencel&/

Lemma 2.2: Assume (l.a), (l.c) and (2.f). Let (pt) be a
periodic sequence of positive prices with period k and let

(pf,...,p;) be its orbit. Let us define for all i = 1,...,k

Q§ = (pga"'9P§9p§,""PT9°“)

in which qg is a vector of :ET. Then (pi,...,pﬁ) is a periodic
competitive equilibrium if and only if (q{,...,qi) is a periodic orbit

of W with period k.

As such however, the concept is not very interesting, for it
permits that traders still make forecasting errors even though their

environment is repetitive enough to enable them to discover the laws
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environment is repetitive enough to enable them to discover the laws
governing this regularity. The next assumption states that the traders
may "learn" and thus meke mistakes when their environment is chaotic,

but that they are clever enough to recognize that prices are periodic.

(2.g) The expectation function ¢ 1is consistent with periodicity k.
More precisely, for any sequence pt, pt-l""’ pt—T that
displays period k, that is, such that pt-j = pt-j-k for

j =0’1,...,

‘P(Pt S)oieRe ’Pt'-T) = p.t_k+l

This assumption implies that agents make correct forecasts along a
periodic competitive equilibrium with period k. We shall then speak of
a periodic competitive equilibrium with perfect foresight. We get then

the following very simple characterization.

Proposition 2.3: Assume (1l.a) and (1l.c), and consider an infinite

sequence of positive prices (pt) that displays period k. Under
assumption (2.g), (pt) is a sequence of temporary competitive

equilibria if and only if it satisfies for all t

(2.6) 2,(8,) + z,(6, ;) =0
(2.7) mg(p P...) =p, ..2,(08) =M
TR gl t+172° 't
s . = el
in vhich 8, = Pt/pt+1' One has then 8 < 6, <8 =12, (21) for all t.
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Tﬁe statement is in fact immediate. Consider an infinite sequence
of positive prices (p,) with period k. Then under assumption (2.g)
(Pt) is a sequence of temporary competitive equilibria if and only if
it satisfies (2.1) and (2.2), or equivalently (2.3), in which

w(pt,...,pt_T) =Py, for all t. This yields for all t

M -
(2.8) zl(et) + Yo 0
t
d - -
(2.9) m (pt,pt+1) z pt+1z2(6t) =M

in which © Then (2.9) is nothing else than (2.7).

& = Pe/Praa
Moreover, this relation tells us that an old trader's excess demand for

the good at an arbitrary date +t, M/pt, is what he planned to do when he

was young, i.e., z2(3 ). Replacing M/pt vy z,.(6, .) in (2.8)

2 t-1
yields (2.6). The fact that M is positive implies zz(et) >0 and

t-1

thus Gt > 8. One has then z2(et) = -zl(Gt) < li, and thus
8, < 8 = zgl(lf).

The system (2.6), (2.7) states simply that markets clear and that
consumers forecast correctly future prices at every date.lé/ The
important property of the system is that it dichotomizes. The good
market equation (2.6) determines the periodic sequence of et - or
equivalently of real interest rates pt = St -~ 1 - and indeed all real
equilibrium quantities (consumption, output, real balances M/pt)
independently of (2.7), i.e., of the level of the money stock M. The

level of prices is then in turn determined by the money equation. As s

matter of fact, given a sequence 6t > 8 satisfying (2.6) for all %,
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it suffices to fulfill {2.7) at some specific date to guarantee that the
whole sequence of prices defined by Piyq = pt/Bt satisfies the money
equation at all dates. Indeed, if (2.7) is fulfilled at date t -1,

then according to (2.6)

M =pz,(6 ,)=-pz/(6)

and thus from (1.4)

0 4 Pt+122(et)

Given the equilibrium sequence (Gt), the level of corresponding
equilibrium money prices is proportional to M. A once-for-all change
of the level of the money stock is thus neutral in the long run. This
is the traditional Quantity Theory.

It my be noted that under assumption (1l.a) and (1l.c), the
restriction to the interval [5,+w) of the excess demand function
22(6) is increasing (Lemma 1.2) and therefore has an inverse. Then

(2.6) gives rise to a very simple difference equation of the form

(2.10) 0,y = 25 (-2, (8,)) = 4(8,)

in which the function ¢ = z;1°(-z1) maps the interval [6,+®) into

[5,6). The outcome of this inquiry is then that finding a pericdic
(monetary) competitive equilibrium with perfect foresight (satisfying
(2.g)) with period k 1is equivalent to finding a periodic solution of

(2.10) with period Xk such that Bt > B8 for all t. Indeed, under
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assumptions (l.a), (l.c) and (2.g), if (pi,...,pﬁ) is a periodic
competitive equilibrium with period k, and if one defines

* = p¥/p¥ 3 = — 3 * = n¥* %* > 0

Gi pi/pi+l for i =1,...,k (with ) 2] pl), then 6% for
all i and (6;,...,63,6:) is a periodic orbit of ¢ with period

k. Conversely if (9;,...,6*) is a periodic orbit of ¢ with period

1

k, and if 6? >8 for all i =1,...,k, then the prices (pi,...,pﬁ)
defined by using (2.7) i.e., p¥ = M/zz(e‘{_l) for i =1,...,k (with
eg = 9;) determine a periodic competitive equilibrium with period
k.léj It goes without saying that the equivalence we Just stated
concerns only periodic competitive equilibria and periodic orbits of

¢. By contrast, the "backward rational expectations” dynamics that are
implied by (2.10) do not represent any "true" dynamics. The only
dynamics that actually describe the evolution of this econony over time
is represented by the equation (2.4) or equivalently by the map %.

It may be worthwhile to end up this section with a simple
graphical illustration of the backward dynamics associated to (2.10) and
the map ¢, by using a trader's offer curve. This is done below in
Figure 3, which is drawn under the assumption 8 < 1. Starting with
et > 8, we first draw the intertemporal budget line of equation
etal +ta, = etli + 23. It intersects the trader's offer curve at the
point of coordinates (2{ + zl(Gt), 2%+ z2(et))' Finding the value of
6., that satisfies zl(et) + z2(et-1) = 0 is then achieved by
following the arrows on the Figure, by going first vertically to the 45°
line AB that passes through the endowment point (2{,23), and then

horizontally back to the offer curve. This procedure yields the point
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: * *
of coordinates (21 + zl(et-l)’ 22 + 22(6 )) and thus the

t-1
corresponding value of et-l = ¢(6t) by drawing the corresponding
intertemporal budget line. The Figure shows that ¢ has always a fixed
point 6 = §, which corresponds to a nonmonetary stationary state, and

that 8 = 1 1is the unique monetary stationary state whenever § < 1.

The Figure gives moreover an example of a cycle of period 2.

Remarks:

(1) Under assumptions (1l.a) and (l.c), the backward perfect
foresight dynamics that is implied by (2.6) is well defined, as we have
seen, and is described by the map ¢. On the other hand, it is easily
seen that a "forward perfect foresight" dynamics that would yield Gt

as a function of Gt is not well defined by that equation. Figure 3

-1
gives an example of multiple solutions since trying to go forward from
et-l would give the choice among two possible points on the offer
curve. Indeed, if one starts from the point of the offer curve that
corresponds to et-l’ the forward dynamics associated to the equation
zl(et) + ze(et_l) = 0 requires that one should go first horizontally to
the 45° line AB and then vertically back to the offer curve. In the
case of Figure 3, this procedure yields two points. If one goes back to
Figure 2.a, one sees easily that the forward dynamics implied by (2.6)
is eventually undefined in that case, if one starts with a value of 60
that is greater than 1. The reason is that at some stage one should

22(

zl(Bt) + z2(9

have et—l) > 2{, and thus there could not exist a 8 such that

t

£y) = O
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(2) The assumption that traders use the same expectation function
y over time may be interpreted as follows. Consumers have a given
"model" of the workings of the economy and use a given statistical
technique (Bayesian methods or maximum likelihood procedures) to
estimate the parameters of the model and to forecast future prices.
This way of proceeding yields the map VY. One might envision more
sophisticated learning processes in which traders change over time their
models of the economy (their expectation functions) according to some
prespecified rule that would for instance take into account previous
forecasting errors. Note that this supposes an exchange of information
between generations about which "model" they use. Moreover, the
description of the state of the economy at each date involves then not
only the current price p; but also the expectation function wt that

consumers are employing currently. Such learning procedures have been

considered by Fuchs [1976, 19TTa, 197Tb, 1979a, 1979b].

3. Stability and Learning

The example given in Figure 3 suggests that several periodic
competitive equilibria involving different periods will typically co-
exist. In the particular case of Figure 3, a cycle of period 2 coexists
with the unique stationary (monetary) equilibrium 6 = 1. We shall say
more on this question in the next section, when analyzing the existence
and multiplicity of periodic equilibria. But this preliminary remark
shows that the issue of stability is an important one. The purpose of

this section is to study more precisely this issue. Specifically, it
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will be shown that while stability of a periodic equilibrium must take
into account that traders learn over time - i.e., it must be defined by
using the temporary Walrasian equilibrium function W or equivalently
the map % - such stability may still be studied fruitfully by looking
at the simpler but fictitious backward perfect foresight dynamics
implied by (2.6) or its associated map ¢.

We shall assume throughout this section assumptions (1.a2), (1l.c),
as well as (2.f), so that the functions % (or W) and ¢ are
continuously differentiable. Let us first define stability. Consilder
accordingly a periodic competitive equilibrium (p{,...,p;) with
period k, and the corresponding cycle (qi,...,qﬁ) of the map % (see
Lemma 2.2). Since the dynamics implied by the functions W and & are
equivalent, we my say that the periodic equilibrium (p%,...,pi) is
locally stable if and only if the cycle (qf,...,qﬁ) itself is locally
stable - or if and only if there exists a neighbourhood Q of q{ such
that for all q in Q, the orbit of q Dby the map &k stays in Q
and converges to qf, i.e., %kt(q) € Q for all t>1 and

1lim ﬁkt(q) = q} (by continuity of %, this ensures that &kt(éi_l(q))
>
:o;:erges to q? as well for i = 2,...,k). Since under (2.f), W and
% are continuously differentiable, the foregoing stability condition is
equivalent to stating that the eigenvalues of the Jacobian matrix of
ﬁk at aqf, i.e., D&k(qf), have all a modulus less than unity.

In order to make sense, the definition should not depend upon
whether we start near qi or near any other point q? of the periodic
orbit (qi,...,qﬁ) of %, since (q?,...,qi,q{,...,q;_l) describes the
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same cycle. From Wk(q) = Wk-l(W(q)), we get by employing the chain

rule of differentiation,
WE(q#) = D1 (q%)DW(q#) = ... = DW(q*) ... DW(g¥)
1 2 1 k 1

Thus DWk(q{) is obtained as the product of the Jacobian matrices of
W, Dw(qi), at the different points of the cycle. Applying the same

procedure to DWk(qg), we obtain
- s = = .
#) = * * ®) ... *
DW~(q}) = DW(q¥ ) ... DW(aF)DW(q}) DW(a¥)

Now for any two square matrices A and B, the eigenvalues of the products
AB and BA are the same (see e.g. Wilkinson [1965] p. Sk), so that the
eigenvalues of the Jacobian matrices D&k(qf),...,D&k(qi), are all the
same, which establishes the equivalence we were looking for. We have

thus the following result, which will be taken as a definition.

Under assumptions (l.a), (l.c) and (2.f), the periodic
(3.1) equilibrium (p{...,pﬁ) is (locally) stable if and only if the

eigenvalues of the Jacobian matrix
OW5(q*) = DW(q*) ... Di(q¥)
1 k 1

have all a modulus less than 1.

Computing the eigenvalues of a (T x T) mtrix - or checking that
they have a modulus less than 1 - is not a very pleasant task when T
is large. But we have shown in the preceding section that under
assumption (2.g), one may associate to the periodic equilibrium

(pf,...,p;) the cycle (6;,...,9{) of the map ¢ defined in (2.10),
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through the relations 9? = p?/p§+l (with p;+1 = pi) - and
conversely. One my hope to exploit this equivalence by looking at the
stability of the cycle (9;,...,6{) under the dynamics implied by ¢.
Indeed, stability in that case is much simpler. If we transpose the
argument given above concerning the local stability of the periodic
orbit (qi,...,qﬁ) of the map %, we see that (6;,...,6?) is
(locally) ¢-stable if and only if the absolute value of the derivative

k

of ¢ at 6% i.e., |D¢k(6;)l, is less than 1. Again, this definition

*
k,
does not depend upon the point chosen on the orbit since by the chain

rule of differentiation,

k—l(

Dg*(8) = D¢" (82 _; ID4(0F)

D¢(9{) e D¢(e§)

Dg*(6%)

The hope to ascertain some relation between the stability of a
periodic equilibrium (p{,...,pﬁ) and ¢-stability may seem somewhat
foolish at first sight. After all, the mp, ¢ describes a fictitious
and very abstract backward dynamics with perfect foresight, while the
actual dynamics given by W or % go "forward". The enterprise is not
as vain as one might expect, however. Under assumption (2.g), antici-
pations are correct along a periodic orbit, and thus by continuity,

nearly correct in its neighbourhood. On the other hand, the essence of

learning is precisely to forecast future prices by looking backward at

past prices.
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Indeed let us consider

(3.h) For any periocdic sequence (pt’pt-l""’pt-T) that has period

k, the expectation function satisfies wé =0 and V' 2 0 for

]
all j =1,...,T.

Then we have the followingllj

Proposition 3.1: Assume (l.a), (l.c) and (2.f), (2.g).

Consider a periodic competitive equilibrium (p{,...,pﬁ) and the
associated cycle (6;,...,6?) of ¢. Under assumption (3.h),
¢=-stability of (6;,...,6?) implies stability of (pf,...,p;) in the
sense of (3.1).

Assumption (3.h) says that a trader facing a periodic sequence of
current and past prices thinks that a small variation of the current
price has only a secondary importance, and that a small increase of past
prices does not lead to a downward revision of the expected price. It
is instructive to see what are the implications of (3.h) in the light of
assumption (2.g). The latter assumption says that for any periodic
sequence (pt""’pt—T) with period k, one has
w(pt,...,pt_T) = Dy _ya1’ Note that this implies that the expected price
¢ is then unchanged, for each integer 0 < j < k - 2, whenever the
(constant) sequence (pt-j’pt-j—k""’pt—J-nk"") is multiplied by an
arbitrary real mumber A > O, and that ¢ changes proportionately to
A when j =k - 1. When ¢ is differentiable, one gets then by

differentiation with respect to A 1in each case
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(3.2) ¢3 + ¢5+k + eee + ¢5+nk + eee =0

for 0 < J k - 2 f(here n runs from O to the largest integer that

nA

is compatible with J + nk < T) and

(3.3) e Vo g *oere * wék-l 4+ 0. =1

in which n runs this time from 1 to the largest integer compatible
with nk -1 < T (we recall that we consider T as finite but
"arge"). The arguments of these partial derivatives are of course the
particular periodic sequence (pt""’Pt-T) under consideration. In

view of these relations, assumption (3.h) implies then that

wé = 0. All other partial derivatives ¢

J

(3.4) except those of the form wﬂk-l’ n > 1, which are nonnegative

are zero,

and satisfy (3.3)

What this condition means is that a trader facing a periodic
sequence of prices (ﬁt,...,ﬁt_T) with-period k Dbehaves locally (in a
neighbourhood of the sequence) as if movements of the current prices,
and of the past prices other than those of the form Py k41’ were only
of secondary (negligible) importance. His forecast is then - again
locally - some sort of "average" of the relevant past prices
Py _ys1? Pror+l’ and so on. Indeed, for any (even aperiodic) sequence

(pt"'°’pt-T) in a neighbourhood of the original periodic sequence

(it""’it—T)’ the expected price is approximately given by
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7 . )
W(pyseeesPyp) = ¥(BseesPy g) * jZo(pt_j = By_y ¥y (PyoeeesPp )

which yields in view of (3.h4)

& ' = =
(S JETELR S Y nzlpt-nk+lwnk—l<pt""’pt-T)

(the first term of this sum being 0 if k = 1). Such a behaviour does
not sound implausiblerlgl

Proposition 3.1 will lead to a great simplification of our
analysis in the sequel. For it tells us that if we succeed in finding a
cycle (eﬁ,...,ef) of the mp ¢ that is stable, the corresponding
periodic equilibrium (pi,...,pﬁ) is automaticably stable itself,
provided that anticipations verify (3.h). It should be emphasized
however, that the result goes one way only. It is possible in

particular that a cycle (8% 9

Eaeees ) is unstable in the dynamic

*
1
associated to ¢, whereas the corresponding periodic equilibrium
(p{,...,pﬁ) is stable.

Another outcome of the foregoing analysis is that one should
generally be very cautious when interpreting the stability results that
are obtained in a model employing the convenient but abstract assumption
that traders have perfect foresight even out of "steady states" - as has
been customary recently under the impulse of the so-called "New
Macroeconomics” school. For if the traders' learning processes are
taken explicitly into account when modelling the dynamic evolution of an

economy - as they should since learning is after all the primitive

concept that enables model builders to justify at least implicitly the
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mere assﬁmption of perfect foresight - then stability results my well
be reversed. The point is most forcefully illustrated by the case
represented in Figure 2.a. As we have already seen (see the Remark at
the end of Section 2), the "forward" perfect foresight dynamics

described by the equation zl(et) +z = 0 1is then ultimately

2(et-1)
undefined if one starts with 6 > 1. But at least such dynamics is well
defined in a neighbourhood of the unique stationary monetary equilibrium
O =1 - it can then be approximated by the linearized system

(et -1) = y(et 1) in which v = -(zé(l)/zi(l)). By differen-

-1 -
tiating (1.h4) at 0 = 1, we get zé(l) + zl(l) + zé(l) = 0, and thus

Y > 1. The stationary equilibrium 6 =1 is unstable in the forward
perfect foresight dynamics (equivalently, it is ¢-stable). Suppose now
that traders use in fact a learning process to form their forecasts and
that the associated expectation function Y satisfies for every
stationary sequence of prices (pt =p for all t) Y(p,p,e++,P) = P,
that it does not depend on the current price and that it is a
nondecreasing function_of past prices. Then Vy satisfies (2.g) and
(3.h), and Proposition 3.1 tells us that the stationary equilibrium,
being ¢-stable, is indeed stable when traders employ the above learning

process, which appears quite reasonable.

Remark: BStability of a stationary monetary equilibrium has been
studied in the more general context of temporary equilibrium theory by
Fuchs and Laroque [1976] - see also Tillman [1983]. The issue of
stability of a stationary equilibrium when traders employ more

sophisticated learning procedures - in particular when they may revise
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their expectation functions over time in view of previous forecasting
errors - has been investigated by Fuchs [1976, 197Ta, 197Tb, 1979a,
1979b). Stability of a periodic competitive equilibrium when consumers
revise their expectations functions over time, and its relation to
¢-stability 1is an open issue in that case. Note that the problem
becomes mich more complicated, since the state of the economy at a given
date must then be described by a price and an expectation function. The
paper by Fuchs and Laroque [1976] contains also a few partial results
concerning local dynamics in a neighbourhood of a given cycle.

The question of the stability of perfect foresight or rational
expectations equilibria when traders employ a given learning procedure
has also been addressed to in a macroeconomic stochastic model by M.

Bray [1982], P. Champsaur. [1983], B. Friedman [1979].

L, Existence, Stability and Bifurcation of Periodic Equilibria

The results that were obtained in the preceding two Sections imply
first that finding a periodic monetary equilibrium with perfect
foresight is equivalent to finding a periodic orbit of the map

ane ¢(et) with 6. > 8 for all t, and second that ¢-stability

8
t t

implies stability of the true dynamics with learning described by W or
%, if expectations satisfy assumption (3.h). We take advantage of these
facts and study in the present section the conditions that lead to the
occurrence of cycles of the map ¢, their multiplicity and stability,

without any further explicit reference to the underlying dynamical

process with learning. The tools that we shall use are borrowed from



41~

recent‘mathematical theories that have been constructed by using partly
the notion of the "Hopf's bifurcation”" of a dynamical system in order to
explain the emergence of cycles and the transition to turbulent
("chaotic" or aperiodic) behaviour in physical, biological or ecological
systemsrlgf

The general idea is that cycles with a period k > 2 will appear
in the present model whenever there is an important conflict between the
intertemporal substitution effect and the wealth effect that results
from a variation of the real interest rate, so that a trader's offer
curve displays a significant "hump" as in Figure 3. For this to be the
case, it is necessary that an old trader's relative degree of risk
aversion R2(a2) is greater than 1 for some a, > 0. The phenomenon
will be seen to appear in particular - in the case of a constant
relative risk aversion - when old consumers are sufficiently more risk
averse than young traders.

An interesting fact occurs, however, as cycles with different
periods will typically coexist. An instance of the phenomenon was
already given Figure 3, in which a cycle with period 2 coexisted with
the unique monetary steady state. Much more can be said in fact. If
the set of positive integers is ordered in a specific way - which we my
call the "Sarkovskii's ordering" from the name of the mathematician who
discovered it - and if the map ¢ has a cycle of period k, then we are
sure that it has also a cycle with a period k' in which k' is any

integer that is ranked before k in the ordering. In particular, if

there is a cycle of period 2k, then there is also a periodic orbit with
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period 2% in which n = 0,1,..., k = 1. Moreover, if there is a cycle
of period 3, then cycles of period n, in which n is an arbitrary
positive integer, will also exist.

In the face of this bewildering miltiplicity of periodic equi-
1libria, the stability issue is essential. There is indeed a condition
on the mp ¢, namely that it has a negative "Schwarzian derivative",
that ensures that there exists at most one stable periodic orbit. This
condition will be related to certain properties of the traders' utility
functions. It will be seen in particular that the condition obtains, in
the case of a constant relative degree of risk aversion, when young
consumers are only moderately risk averse (have a relative risk aversion
that is less than or equal to 1) while old 4traders have a relative risk
aversion greater than or equal to 2. Neadless to say, this result, as
instructive as it is, does not imply in general however that the true
dynamics with learning described by the map W or ﬁ possess a unique
stable cycle.

The last part of the Section will be devoted to the analysis of
the "bifurcations" of the dynamical system, and more precisely of the
emergence of ¢-stable cycles. It will be seen essentially that if one
considers a one parameter family of economies, then stable periodic
orbits do appear once again in conformity to the Sarkovskii's ordering
of the set of integers. We shall give a particular example of such a
bifurcation scheme in the case of a constant relative risk aversion, in
which the young consumers' risk aversion is held fixed, while the old

traders' risk aversion is increased progressively. The result of "this
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computer experiment will be that cycles do emerge for values of the

relative degrees of risk aversion that do not appear implausible.

Characteristics of the map ¢ and equivalent dynamics

We begin the analysis by reviewing a few basic properties of the
mp ¢ and define dynamical systems that are equivalent to the

difference equation 6

61 = ¢(6t). These equivalent dynamical systems

are in fact obtained by making a change of variable 6 = h(6).

We assume throughout this Section (1.a), (l.c). Then the function

z2(9)
0

(4.1) ¢ = 23 (-2, (8)) = 23 (

maps the interval [B,+©) into [8,8) in which 8 = zél

(2{), and is
continuously differentiable. Clearly § is a fixed point of ¢, that
corresponds to a nonmonetary stationary equilibrium. On the other hand,
we have ¢(8) < O whenever 6 > 1. Thus if 8 > 1, there can be no
monetary cycle of any period since ¢J(6) decreases monotonically to

8 as J tends to infinity. We shall assume accordingly 8 <1

(assumption (1.d)). Ve have then

Lemma 4.1: Assume (1l.a), (l.c), (1.d). Then ¢ maps the
interval [8,+*) into [8,8) in which 8= zgl(li), and is
continuously differentiable. Moreover

1) ¢(8) =8, ¢(1) =1, ¢(8) > 6 whenever 6 < 6 <1 and
$(6) < 8 whenever 6 > 1

2) One has ¢'(8) =1/8 >1 and ¢'(1) <1

3) Let a, = Sup R2(a2). Then if «, < 1, one has $'(8) >0 for

all 8 > 8.
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) If oy > 1 and if R2(a2) is nondecreasing (assumption
(1.e)), then the mp ¢ is unimodal with a unique nondegenerate
critical point, i.e., there exists 6% > 8 such that ¢'(8) > 0 when
[} < 0 < 0%, $'(6%) = 0 and ¢'(8) < 0O when 6 > 6%, In that case, the
conditions ¢'(1) <0 or 6% <1 or 6% < ¢(8%) are equivalent. If

any one of them is satisfied, one has 6% <1 < $(6%) and

$2(0%) < 1 < ¢(0%),

The proof of the lemma is straighforward. The first part follows
trivially from (4.1) and the fact that 2z, 1is an increasing function.

As for the last two points, it suffices to remark that

-z1(8)

' =
(h.2) $'(8) ;ngrgyy
which can be rewritten by differentiation of the identity
Ozl(e) + 22(9) =0

23(8) - (2,(0)/9)
(4.3) $'(8) = g TreTaN)

Thus (4.3) yields ¢'(8) = 1/8 > 1 since 22(5) =0 and ¢'(1) < 1.
Finally, the point 3) and the first part of 4) are obvious consequences
of (4.2) and of Lemma 1.3. The last of 4) is true for any unimodal map
¢ that has 06 =1 as a fixed point.

The map ¢ seems to be the most natural to consider from an
economic viewpoint since it originates from the perfect foresight
equilibrium equation for the good market (2.6), which determines equi-

librium relative prices and thus real interest rates independently of
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the money sector. Yet there is nothing intrinsic from a mathematical
point of view that is attached to this particular function, and it will
be sometimes convenient in the sequel to modify the foregoing dynamical

equation ¢ = ¢(9t) by making a change of variable of the form

t-1

® = h(6) in which the function h maps [B,+®) onto some interval
[a,b), is continuously differentiable, and h'(8) > 0 for all 6 2 8.

The equation = ¢(6t) becomes then with the new variable

8
t-1

~ ~

0, , = Rle(n™(8.))] or 6, = #(8) with ¢ = hopeh”

1

~

The two maps ¢ and ¢ are then said to be topological conjugates. It
is clear that they describe the same dynamics: this folows from the
relation between the iterates of the two conjugate maps, that is

;k = ho¢koh_1. In particular, the two maps have the same cycles up to
the change of wvariable formula 5 = h(68), and the stability or
unstability of a cycle is unaltered by the change of coordinates.gg/

We shall take advantage sometimes of this equivalence by
considering a particular change of variable, in which h(8) = z2(9), and
shall denote the result x = Z, ¢ zgl. One may remark that the function
X has a particularly simple interpretation, for it describes the
(backward) perfect foresight dynamics on equilibrium real balances.
Indeed, we know from (2.7) that these equilibrium real balances U are

t

associated to perfect foresight equilibrium real interest rates Bt by

= 3 i 0 = 0
ut+1 z2(et) Therefore the equation -1 o t) becomes through

this transformation
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e S (
2 ‘M

(L.h) u, = z2(9 B = )

t t-1
The curves describing the maps ¢ and X are represented below

in Figures 4.a and 4.b under assumptions (1.a), (1.c), (1.d), (L.e), and

when a, = Sup R2(a2) > 1. Of course, since the two curves are deduced

from each other through the change of variable u = 22(6), they must

display the same qualitative properties. In partiéular, if

a. = Sup Rz(az) <1, x 1is increasing everywhere, while ¥ has a unique

2
eritical point u* = z2(6*) when o, > 1 under assumption (1.e).2l/

It is useful to note that the mp ¢ (or x) may be defined
implicitly by an equation involving marginal utilities. If we look back
at the identity (1.11) and apply if for 6 = Bt, we see that the
backward difference equation zl(et) + Z2(et—1) = 0 1is equivalent to

(k.5) za(et_l)Vi(ZT - z2(et_1)) = z2(et)Vé(2§ + zz(et))

which gives the function ¢ in implicit form. By mking the change of

variable M ., = z2(et)’ (L.5) Ybecomes

(4.6) utVi(ﬁf - ut) =p L VI(RE 4w )

t+1 2 2 t+1

which defines implicitly the map X. As a mtter of fact, if we define

the functions vy and Vs by

V(g% _ : *
vl(u) uVl(Z1 u) for u in [O,ll) and

(4.7)

] »* >
v2(u) uV2(22 +u) for all w20
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we see that A4 is a differentiably increasing function that maps the

interval [0,2§) onto [0,+»), while v, maps [0,+®) onto itself.

2
Then one has x(u) = (vzlov2) (W) for all wu > 0. This way of defining
the function ¥ has the advantage of involving directly the traders'
characteristics, i.e., their utility functions, instead of their demand
functions z, and z, as in (k.4). This feature will be quite useful
in the sequel.

The reader might benefit from relating the properties of the map
X to the corresponding properties of the functions vy and Voo In
particular, if a, = Sup Rg(ag) <1, v, is increasing everywhere, while
v

», has a unique maximum at w = p¥ = 22(9*) under assumption (l.e)

when a2 > 1. It is moreover easy to verify that
] * ' *
(4.8) vl(u) > Vl(zl)u and v2(u) < V2(22)u for all u >0

This statement, which says in effect that the curve representing vq
(or v,) must 1lie above (or below) its tangent at the origin w =0,
follows directly from (4.7) and the strict concavity of the utility

functions VT.

Existence and multiplicity of periodic equilibria.

We look now at the existence and multiplicity of periodic
equilibria. We shall assume throughout assumptions (l.a), (1l.c), (1.d),
and shall denote as before a, = Sup R2(a2).

Since B < 1, there is a unique stationary monetary equilibrium

8 = 1. We give first conditions under which there is no other cycle

with a period k > 2.
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Lemma 4.2: Assume (l.a), (1l.c), (1.d). If a, < 1 or if

assumption (l.e) holds, a, > 1 and zé(l) < 0, then the map ¢ has no

2
cycle with a period k > 2. Moreover, the unique stationary monetary
equilibrium is globally ¢-stable, i.e., lim ¢J(6) =1 for every
3400

8 > 8. o

The proof of this statement is immediate. Under the assumptions
of the lemma, either ¢ is increasing everywhere, or ¢ 1is unimodal
with a unique critical point 0% > 1. Consider now an arbitrary 60
that differs from 6 and from 1. In the first case, i.e., when
a < 1, then if 60 <1 one has eo < ¢(60) < ¢(1) = 1, and one gets
the reverse inequalities whenever 90 > 1. By applying the same
arguments to the iterates ¢j(60), one gets that ¢j(60) converges
monotonically to 1 when J tends to infinity. In the second case, we
remark that ¢(8) < ¢(6%) for all 6, so that we may assume without
loss of generality that the initial point 60 belongs to the interval
(8,0(6%)]. Note next that 6% > 1 implies ¢(8%) < 8*. Thus
$'(8) >0 for all 6 in the interior of the interval (8,4(6%)]. One
may therefore reproduce the argument given in the first case to conclude
that ¢j(60) converges to 1 as jJ tends to +»., This global stability

result implies of course the nonexistence of a cycle displaying a period

k

v

2.

The foregoing result shows in particular that a necessary
condition for the occurrence of a cycle of period k > 2 (of a "non-
degenerate" cycle) is that old traders are sufficiently risk averse

(a2 > 1) and that (under assumption (l.e)) (1) > 0, or equivalently

4
1
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that ¢'(1) < 0. This condition means that the unique critical point of
¢ satisfies 0% < 1 (equivalently x(u*) > u* or vz(u*) > vl(u*)).
It is straighforward to see that under assumptions (l.a), (l.c),
(1.4) a sufficient condition for the existence of a cycle of period 2 is
that the stationary equilibrium is ¢-unstable, i.e., $'{1) < -1, or
equivalently zi(l) > zé(l).ggj A cycle of period 2 is indeed described
by (9?,63) in which each 6? is a fixed point of the iterate ¢2, and
65 = ¢(ei) # ST. It is then clear that in order to find a cycle of
period 2, it is necessary and sufficient to find a fixed point 6 > )
of ¢2 that differs from 1 -~ the corresponding orbit being then
(6,6(8)). Now the function ¢2 maps the interval [8,+=) into (8,8)
and is continuously differentiable. One has ¢2(§) = B, the derivative

of ¢2 at 6 is equal to (1/5)2 > 1, and of course ¢2(1)

"
iy
S

sufficient condition for the existence of a fixed point 6 >

@l

[o]

r—b
©

that differs from 1 is therefore that the derivative of ¢2 at 6 =1

is greater than unity, that is
(4.9) pe?(1) = [¢'(1)1% > 1

Indeed, ¢2(0) >6 for 6 >0 provided that © is close enough to 8.
Under (4.9), ¢2(6) <8 if 6 1is less than but close enough to 1. Thus
by continuity, there exists 6 # 8, 1 such that ¢2(9) = 8. Since
$'(1) < 1, the sufficient condition (4.9) means in effect o' (1) < -1,
as announced.

It is instructive to reformulate the sufficient condition

zi(l) > 2'(1) as follows by using the expressions of the derivatives

2
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zi and 'zé given in Lemma 1.2 (or by using directly the equivalent

condition Vi(ZQ(l)) + vé(ze(l)) < 1)

2% + 2z, (1) 2% + 22(1)

Em i e R (22 + 2 (1))

(4.10) Ry (2% + 2,(1)) > 2 z,(1) * g (1) 1

This relation suggests that a cycle of period 2 will appear if old
traders are sufficiently risk averse. As a matter of fact, the reader
will verify by himself that in the case of a constant risk aversion -
f.e., V. (a ) = al—aT/(l -« ) and thus R (a ) = a - then (4.10) is
satisfied if the old trader's risk aversion is sufficiently large, in
the case in which 23 < 23 < 2{ and 2{ + 22 > 1 (Hint: find
bounds for zl(l) and z2(1)).

We have seen once again in the course of the previous argument
that cycles of period 2 were bound to coexist with the unique stationary
monetary equilibrium © = 1. One may thus expect that cycles displaying
different periods will coexist. It turns out that one can be mich more

precise about this coexistence if the map ¢ is unimodal, that is if

(1.e) holds. Consider the following ordering of the positive integers

S Sus.2 T a6

> 2.3 > 2.5 > 2.7 > 0nee

(L.11) > 2%e3 > 25 5 27 s L,

> e 3285 .83 5251

That is, first the odd integers greater than or equal to 3, then the
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powers of 2 times these odd integers, and then the powers of 2 backward.
Given two positive integers k and k', we shall denote by
k >S k' the fact that k 1is greater than k' in the sense of the above

ordering. We then havegi/

Theorem 4.3: Assume (1l.a), (l.c), (1.4) and (l.e). Then, if the
map ¢ has a cycle of period k, it has also a cycle of period k' for

every positive integer k' S< k.

Some implications of this very strong result are worth to be
noted. It shows in particular that cycles with a period 2
m=0,1,2,e.., mist "appear first" before we have any hope to get a
cycle with an odd period. Moreover, if there is a cycle of period 3,
there is also a periodic equilibrium with period n, for every positive
integer n.

In the light of the preceding result, it is interesting to

investigate the circumstances implying the existence of a cycle of

period 3. Such a cycle is represented by its orbit (ef,eg,eg) in
which each 0? is a fixed point of ¢3, 65 = ¢(6§) # 6? and

8§ = ¢2(e§) # e;. It is clear here again that a cycle of period 3 is
characterized by a fixed point 6 > 8 of ¢3 that differs from 1 - the
corresponding orbit is then described by (6,¢(6),¢2(6)). Now the
function ¢3 maps [8,+2) into [6,6) and is continuously
differentiable. One has ¢3(§) =0, D¢3(§) is equal to (1/5)3 >1

and ¢3(1) = 1, One cannot apply here however the argument that we

employed for the case of a cycle of period 2, since
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pe3(1) = [or(1)13 <1

But we can state that under Assumptions (l.a), (l.c), (1.d), a suffi-
cient condition for the occurrence of a cycle of period 3 is that there
exists © such that 6 < 6 <1 and ¢3(e) < 8. Indeed D¢3(6) > 1

implies ¢3(9) > 6 when 6 differs from but is close enough to 8,
and the result follows by continuity.gﬁ/ We may then apply the
foregoing condition, under the simplifying assumption that ¢ 1is
unimodal, to its eritical point ©6¥. Thus, under the additional
Assumptions (1l.e) and o, = Sup Rz(az) > 1, a cycle of period 3 will
exist provided that 6% < 1 and ¢3(6*) <Ues (we know from Lemma 4.2
that 6% < 1 is then a necessary condition for the occurence of any

nondegenerate cycle). It is worth to note that under such a

circumstance, one has necessarily

$2(0%) < 07(0%) < 0% < 1 < (6%)

Indeed we know from Lemma 4.1.4 that 6% < 1 implies ¢2(6*) <1 < ¢(0%),
in which case ¢2(6*) < ¢3(6*) holds also from Lemma 4.1.1.

What we just said for the map ¢ is of course valid for any of
its topological conjugates, and thus for ¥ = VI oVt under the above
assumptions (1l.a), (l.c), (1.d), (l.e) and a, > 1, a cycle of period 3

2
occurs provided that x{(u*) > u* and x3(u*) < v*. In that case we

have also of course

%) < x3(ux) < u* < z,(1) < x(u*)
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Figure 5.a describes a case in which the phenomenon obtains. The
central feature of the example is, as one might have expected, that the
curve ¥ displays an important "huﬁp" (this statement has an obvious
counterpart for a trader's offer curve since it is isometric to the
curve X - see Footnote 21. Figure 5.b represents the implications of
the example for the respective shapes of the curves corresponding to the
functions vy and Vo (the Figure shows incidentally also how the
dynamics associated to the equation vl(x(u)) = vz(u) may be described
with the help of the curves vy and v2). Again, what is important is
that v, displays a large hump, so that v2(u*) is "large" while
VZ(X(U*)) is "small".

We wish now to translate these heuristic statements into a formal

condition that involves only the traders' utility functions, or

equivalently the functions v and v.. Let us assume accordingly

1 2
(1.a), (l.c), (1.d). Then under Assumption (1.e) and a, > 1, the
function 2 has a unique maximum which occurs at the critical point
-1

u* of X = v, Ve The condition u* < x{u*) means in effect that

1
v2(u*) > vl(u*). Since v, 1is increasing, the inequality u* < x{(u*)
will thus obtain if and only if there exists u > u¥* such that

vz(u*) > vl(ﬁ). Consider such a . Since we have u¥ < u < x{u*) and
since x'(u) < 0 for all u > u* we get that xz(u*) < x(u). On the
other hand, since the curve X 1lies below its tangent at u = 0,

25/
i.e., x(u) < u/8 for all u >0 , we have

Sk C(u*) < x(n)
8 [
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The condition x3(u*) < u* will obtain accordingly (in fact with a
strict inequality sign) if
x(§) = (V5 ov,) (W) < Bux

1 2 =

or equivalently if
. u Bu*

(4.12) vz(u) < vy (Bu¥)

Since the curve representing the function v1 mist lie above 1its

tangent at the origin (see (4.8)), we have Vl(éu*) > Vi(lf)ﬁu*, and

thus (4.12) will be automatically verified if
. u 1 (0% )By*
(4.13) vy(n) ¢ Vl(ﬂl)eu
To sum up, we have obtainedgé/

Proposition 4.4: Assume (1.a), (l.c), (1.4), (1l.e), and

a, = Sup Rg(ag) >1. Let v, and v, be defined by (4.7) and let u¥*
be the unique maximum of \-T Assume that there exists > u¥*  such

that ve(u*) > v, (u), that satisfies vg(ﬁ) - vl(ﬁu*) or the stronger

il

condition Vz(ﬁ) Vi(lf)gu*. Then one hasgz/

A

2
Clu®) < xC(u®) < u* < x(u*)
and there exists a cycle of period 3.

Apart from providing a criterion to verify whether a cycle of
period 3 exists, the foregoing Proposition gives a way to "generate"

utility functions that entail the appearance of a cycle of period 3.
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Choose M* and ¥ such that u¥* < u < zf. We keep then fixed all the
characteristics of the model, except the o0ld trader's utility function
v, (or v2) which we shall vary subject to the restriction that (1.e)
holds, and that v» reaches its maximum at u¥*. Choose a value of

Vé(l; + u¥*¥) that is sufficiently high to satisfy
®Y (L% * V(L% - qu
urVL(R% 4 u*) > uv] (2% - w)

and pick an arbitrary value of V'(ZS) (> Vé(l; + u*)). Then it

2
suffices to impose a value of Vé(lg + §) that is sufficiently low to
satisfy (4.13). The only restriction is in fact to fulfill Assumption
(1.e).

The next result confirms the intuition that we had when studying
the occurrence of cycles of period 2, namely that the more a trader's
relative degree of risk aversion increases as he gets older, the more
likely is the emergence of cycles.

Corollary: Consider the case of a constant relative degree of
risk aversion, that is VT(aT) = ail-ar)/(l = ar) in which case
Rr(ar) =a_ > 0. Assume O < 2% <1 and keep fixed all the
characteristics of the model except the old trader's relative risk
aversion o, that is free to vary. Then if 2+ 2% > (1/23), the

assumptions of Proposition 4.4 are verified - and a cycle of period 3

thus exists ~ when a2 is large enough.

The proof of this assertion uses only elementary algebra. In the

particular case under consideration, we have
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-Q -Q

vy (u) = u(e® - u) 1 ana volu,a,) = u(2% + u)

2

a a
We have then §(a2) = (2;) 2/(2{) e which is a decreasing function of

oy and goes to 0 as a, tends to infinity, since 2; < 1. Remark

next that when u 1is fixed and a2 diverges to infinity, ve(u,az)

tends to infinity when O < p <1 - 25, to 0 when u>1 - 23, and

- % =1 — g%
that v2(1 2%, a2) 1 - 2% for all a,. On the other hand, when

a2 > 1, the maximum of v, with respect to u occurs at

u*(ag) = 2*2‘/(a2 - 1), which is a decreasing function of @, and goes

to O as 02 tends to infinity. It is not difficult then to verify

that the maximum of vy, that is v2(u*(a2),a ), diverges to infinity
when a, goes to +,

* * * * * : *
If we have 21 + 22 > (1/22), then 21 + 22 > 1 since 22 € In

Choose now an arbitrary § such that 1 - 2; <u< 2{. We have clearly

* u * n
u (ae) <y and v2(u (a2),a ¥ Vl(u) for a, large enough. On the
other hand, (4.13) will be satisfied if one can choose ¥ so that

v, (u,a,)
2 1

A

t{ g% * =
V1 (2%)8(a, Ju*(a,)
for o large enough. But it is not difficult to verify that the left

2
hand member of this inequality goes actually to O when a, tends to

40 if U + 23 > (1/13). Thus if we choose § such that

N = 2; <u < li and § + 2; > (1/23) - which is always possible when

li + 2; > (1/2;) - then the assumptions of Proposition L.4 are fulfilled

when a, is large, as claimed.
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Unicity of ¢-stable cycles.

Theorem 4.3 above shows that cycles of very different periods will
typically coexist. The stability issue is therefore essential. We
present now a condition that ensures that there exists at most one
¢-stable cycle. The condition is essentially that the map ¢ - or one of
its topological conjugates - has a "Schwarzian derivative" (to be
defined shortly) that is negative. This condition is there to guarantee
that the map ¢ has good "expansive" properties. It will obtain in
particular, in the case of a constant degree of relative risk aversion,
when traders have a degree of risk aversion less than or equal to 1 in
their youth and greater than or equal to 2 when they are older. The
result has obviously strong implications concerning the backward perfect
foresight dynamics associated to ¢. But it should be emphasized that
it leaves open many possibilities concerning the actual course followed
by the econory when agents are learning, i.e., concerning the true
dynamics associated to the Walrasian short run equilibrium function W
or V}, and this even when the traders' learning process § satisfies
Assumption (3.h). Specifically, even in that case, a cycle that is
¢-unstable may be stable under the dynamics described by W or &.

We shall need a refinement of the definition of stability for the
purpose of the present study. A cycle (0% *¥) of ¢ will be said

k,. L ’el
to be weakly stable if D¢k(eaie) <1l. If ¢ is unimodal, the cycle will

be superstable if the critical point of ¢ Dbelongs to the periodic
. s s k . e ’ :
orbit, that is if D¢ (9?) = 0. The notion of ¢-stability is defined

of course as before.
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The object of the analysis that follows 1s to study the conditions
under which the map ¢ has at most one weakly stable periodic orbit,
under the assumption that ¢ is unimodal. Of course, in view of Lemma
4.2, in order to make the problem nontrivial, we need to assume, in
addition to (1l.a), (1.c), (1.d), (1l.e), that @, = Sup R2(a2) >1 and
that ¢'(1) < O, or equivalently that the critical point of ¢
satisfies 6% < 1.

The result that we shall present uses the notion of a "Schwarzian
derivative", which we define now. If f 1s a thrice continuously
differentiable function that maps the interval la,b] of the real line
into itself, then the Schwarzian derivativegg/ of f, denoted Sf, is
defined for every x in la,b] such that f£' # 0 by

o " 2
(4.1h) se =L _ 2 (5

£ T2 \f!

|1/2D2 |_1/2]. So the

Direct inspection shows that Sf = -2|f' (e

condition that "f has a negative Schwarzian derivative" (8f < 0 at

every x such that f£'(x) # 0) means that |f'|-1/2

is convex on
every interval of monotony of f. It will be satisfied in particular
it |£'| (or Log |£'|) is concave on such intervals. But these
sufficient conditions are %W no means necessary. Finally the reader
will note that the concavity of f 1is neither necessary nor sufficient
to guarantee Sf < 0.

In order to use this notion, we must ensure that ¢ and thus the
excess demand functions 29 and z, are thrice continuously

differentiable. This is achieved if we reinforce (l.c) by adding to it
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the following condition

(boe') The indirect utility functions VT have continuous third and

fourth derivatives on (0,+=).

It is then clear that all topological conjugates of ¢ obtained
through a change of variable é = h(6) will be also thrice continuously
differentiable provided that h has continuous third derivatives. This
will be in particular the case of the map X.

Then we have the following important result.

Theorem 4.5: Assume (1l.a), (l.c), (1.d), (l.e), (k.c'),
a, = Sup R2(a2) > 1 and that the critical point of ¢ satisfies
8% < 1. Assume moreover that ¢ (or one of its topological conjugates
;) has a negative Schwarzian derivative on the interval (6,6(6%)] (or
on the corresponding interval [h(8), n(¢(6%))}]). Then

1) The map ¢ has at most one weakly stable periodic orbit.

2) If there exists a weakly stable periodic orbit, then the
eritical point 6% is attracted to it, that is, this periodic orbit
coincides with the set of accumulation points of the sequence

29/
(o3 (8%)). 7

Besides the unicity of weakly stable periodic orbits, the
foregoing result gives an "experimental" way of establishing whether or
not a particular map ¢ has a weakly stable cycle provided that it has

(itself or one of its topological conjugates) a negative Schwarzian

derivative. It suffices to iterate the critical point by using a
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computer, %o check whether or not the iterates converge and to verify
that the limit cycle, if any, is indeed weakly stable. Of course, since
the iterations must be stopped in practice after some time, this
procedure permits us to discover cycles that have a small period, but is
not able to distinguish between the presence of a weakly stable cycle
that has a long period and the absence of any weakly stable periodic
orbit. Finally it should be emphasized that there are maps that do not
have any weakly stable periodic orbit. ©Such maps are called aperiodic.
The foregoing result tells us that a map ¢ that has a negative
Schwarzian derivative will be aperiodic whenever the iterates of 8% do
not converge or if they converge to an unstable cycle.

There is an obvious difficulty in applying Theorem L.5 as it is
stated, for the negativity of the Schwarzian derivative, like any
statement involving convexity is not invariant when making a (nonlinear)
change of variable. We my get accordingly from a particular economic
model a perfect foresight map ¢ that does not satisfy 5S¢ < O whereas
one of its topological conjugates does. In that case, Theorem IS
applies but the model builder may not be able to diagnose it by looking
at the mp ¢. So it is important to have a criterion using the bvasic
characteristics of the model (i.e., utility functions and endowments)
that allows recognizing directly that Theorem 4.5 applies. A partial

answer to this question is provided by the following

Lemma 4.6: Assume (l.a), (l.c), (1.d), (l.e), (k.c'),

a, = Sup RQ(az) > 1, and that the critical point of ¢ satisfies

8% < 1. Consider the functions vy and Vo defined in (4.7) and



~63~

assume that Svl(u) >0 for all wu in [0,2{) and Sv2(u) < 0 on the
interval [0,x(u*)]. Then Sx < 0 on [0,x(u*)] and Theorem k4.5
applies.
In particular, the foregoing condition on(lvl )and Vo obtains in
a

the case of constant risk aversion - Vr(ar) =a. T /(1 - aT) and thus

Ra)=a >0-4if 0<a, <1 and a
T T T

= ;2.

2

The proof of this statement uses the fact which may be verified by
direct computation that the Schwarzian derivative of the composition of

two (thrice continuously differentiable) maps f and g 1is given by
2
(4.15) s(f g)(x) = sf(g(x))g'(x)]” + sg(x)

Applying (4.15) to v, X = V,, we get for all u >0

sv,(u) = Svy (x(u)) [x* ()17 + sx(u)

The first part of the lemma is then immediate.
In the case of a constant relative risk aversion, one has
% ~%
- * = * & il 4 >
vl(u) u(2l u) and v2(u) u(22 + u) Since vl(u) 0 for
all u in [0,2%), Sv1 is defined everywhere on that interval. Direct

computation shows that Sv1 is equal to (up to an everywhere positive

factor)

(1 - a1 = )@ - au® - B2F(2 - au + 6(29)°]

The expressions between the brackets is easily seen to be a monotone

function of u on the interval [O,ZT), which is positive on this
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interval. Thus Sv, >0 on [0,2%) if and only if @, < 1. As for
Vo Sv2 is defined for every u # u* on [0,4*) and the same sort of

computation shows that it has the same sign as
(o, - 1o, = 1)(a, - 212 - b2x(a, - 2)u + 6(28)°]
2 2 2 2'72 2

It is not difficult to verify that the expression between the brackets

is positive for every u 2 0 when «, > 2, which shows the Lemma.

Remark: Under the assumptions of Theorem 4.5 it is possible to
show that if the dynamical system ¢ has a weakly stable periodic
orbit, then the set of points that are not attracted to it is
"exceptional"”, i.e., has Lebesgue measure zero (this follows from Collet
and Eckmann [1980], Proposition II.5.7). We do not insist on this
otherwise nice result for the backward perfect foresight dynamics ¢
has no clear meaning in the present context, beyond the fact that
¢-stability implies stability in the "true" dynamics with learning
under Assumption (3.h). We mention the result nonetheless since it
shows that some claims that "period three implies chaos" are generally
unwarranted. In particular, Benhabib and Day [1981, 1982], Day [1982,
1983] use a result of Li and Yorke [1975], or a variant of it, to
exhibit, under the assumption that there is a cycle of period 3, a
"chaotic set", that is a set such that any perfect foresight trajectory
starting from it becomes eventually erratic. This discussion shows the
limits of such a statement. For if there is a weakly stable periodic
orbit, the "chaotic set" - of which the existence is rightly asserted -

may well be of Lebesgue measure zero, and erratic behaviour may thus be
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essentially unobservable - see also the remarks in Collet and Eckmann

({1980], p.20).

Bifucation of stable periodic equilibria.

We consider now the following experiment. ©Suppose that we take
a "unidimensional" family of economies. That is, we index the
characteristics of the econonmy by a real number and then move this
parameter over the real line. Sarkovskii's theorem suggests that the
emergence of cycles as the parameter moves on should display some
regularities. We show below that it is indeed the case for stable
cycles, and that these regularities are in particular very strong for
those stable cycles that should "appear first" according to the
Sarkovskii's ordering (4.11), namely cycles that have a period equal to
a power of 2. Finally, we shall report on a computer experiment that
was done in the case of a constant relative risk aversion, in which the
0ld traders' risk aversion is varied - in fact increased. The result of
this experiment is a "period doubling" bifurcation scheme very much
alike the diagrams that are traditional in the analysis of nonlinear
one-dimensional dynamical systems. It shows furthermore that cyecles do
appear for values of the degrees of risk aversion that seem plausible,
i.e., that are compatible with recent estimates of these parameters.

In order to go on we mist make precise what we mean by a (one
parameter) family of economies. Let us index the characteristics of the
economy (the endowments 2¥ and the indirect utility functions

Vr) by some parameter A, which will be taken as a real number that
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belongs to say, the interval [0,1]. The result of this indexation is
denoted £¥A and Vrk(ar)’ T =1,2, We assume of course that for each
A the characteristics of the economy satisfy assumptions (1l.a), (l.c),
(1.4), and in order to make the problem nontrivial, also assumption

(1.e) as well as = Supa Rzk(a2) > 1. The corresponding backward

%22 5
perfect foresight map ¢X has then a unique critical point for each
X, say 6%, and we shall postulate that 6% <1 for all A (again,
this condition is necessary in view of Lemma 4.2 to get nondegenerate
cycles). We shall say finally that the family is continuous if in
addition to these assurmptions, the endowments 2¥A depend continuously

on A and if V;A(ar) as well as V;A(aT) are jointly continuous in
(aT,X) for T = 1,2.

In order to state the results most clearly, it will be convenient
to consider a family of economies that is "rich" enough. We shall say
accordingly that the family is full if it satisfies the two following
conditions

1. When X = 0, the second iterate of the critical point 6: is
such that Gg < ¢§(6;). In other words, since from Lemma 4.1.4 we have
already ¢§(6§) <1< ¢0(6§), this condition means that the trajectory
of the critical point 6; begins by an oscillation around the
stationary equilibrium 6 = 1. It can be shown that under this
condition, then if the map ¢o has a nondegenerate cycle it must have a
period at most equal to 2r§9/

2. When A =1, the map ¢1 satisfies for instance the

assumptions of Proposition 4.4, so that the trajectory of the critical
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point 6% fulfills
¢2(e*) < ¢3(e*) < 8% < ¢ (0%)
1'71 1''1 1 1''1

and there exists a cycle of period 3.

The following results gives some insight about the fashion in
which stable cycles emerge when the index A of a continmuous full
family of economies moves from O to 1. First, superstable cycles of
all periods k > 2 do occur for some values of the parameter A. Of
course, given a value of A for which a superstable cycle obtains, a
stable cycle of the same period should still exist by continuity when
the characteristics of the econonmy are changed only a little. Second,
stable periods that are equal to a power of 2 appear first and in a
consecutive manner, in conformity to the ordering (L.11) of the
integers. So if the family is "nice", one should observe a neat pattern
of "period doubling" bifurcations, a cycle of period 2 giving rise to
a cycle of period 2J+1, and so on. Such a monotonic pattern is not
general however (think of a non-monotonic reparametrization of the
family) and the sequence of stable periods 2J may be "visited"
consecutively but in a nonmonotonic fashion as the index A increases.

Nevertheless, the general scheme is that the sequence of values
Ag for which a superstable cycle of period 2d appears first,
increases and converges to some value A¥ < 1. Thus period doubling
bifurcations intevene more and more rapidly as A moves closer to A¥X.
The nice point is that if for each A +the map ¢X (or one of its

topological conjugates) has a negative Schwarzian derivative as in
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Theorem 4.5, then there exists a unique weakly stable cycle - the period
of which is a power of 2 - for every XA < A:. In that case weakly
stable cycles with a period that differs from a power of 2 must obtain
only in the interval (A:,l]. In fact a lot of phenomena may occur in
that region. In particular there is an uncountable set of values of

A in (A:,l] for which the map ¢A has no weakly stable periodic
orbit.

Formally, we have

Theorem 4.7: Consider a full continuous family of economies.

1) Given an arbitrary integer k > 2, the set of parameters A
for which the map ¢A has a superstable cycle of period k is closed
and nonempty. Given such a A, there is an open interval around A
such that ¢k' has a stable cycle of period kX for all A' 1in the
interval.

2) Let Ag be the first value of the paramete;/ A for which a
superstable cycle of period 2 obtains for J 4 1.§— Then the
sequence Ag increases with J and converges to some value
A% <1 as J tends to +®. For each A in [0,A*), all cycles of the
map ¢A have a period that is a power of 2 or are fixed points. The
critical point ei of ¢A is attracted to one of these.

3) If superstable cycles of periods o and 23' with
J'" >3 + 1 occur respectively for the values A and A' in
[0,A%), then a superstable cycle of period ol witn gtk > dnes g

rmst appear for some value in the open interval determined by

A and A',
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4) Assume that each ¢y (or one of its topological conjugates)
satisfies (4.c') and has a negative Schwarzian derivative. Then for
every A in [0,A¥), ¢, has a (unique) weakly stable periodic orbit.

5) Under the assumptions of 4), there exists an uncountable set

of values of A in (A%,1] such that ¢, has no weakly stable cycle.

The foregoing result suggest that one should observe first regular
period doubling bifurcations in a unidimensional full continuous family
of economies on some interval, and then that chaotic behaviour as well
as stable cycles with a period that differs from a power of 2 should
obtain later, perhaps in a mixed way. This is in fact the pattern that
is always observed in computer simlations of unidimensional dynamical
systems (see May [1976], or Collet and Eckmann ({1980], p. 26)).

The following diagram (Figure 6) shows the result of a similar
computer experimentiz/ implemented in our context in the case of a
constant relative degree of risk aversion - i.e., Vr(ar) = ail-ar)/(l = aT)
and RT(aT) =a_ >0 - in which the parameter indexing the family has

been taken to be the o0ld traders' relative risk aversion o Then we

2.
know from Lemma 4.6 that if @ ¢1 and a,2 2, Theorem 4.5 applies.

In that case, it suffices to iterate the critical point 0%
sufficiently long to discover the unique weakly stable cycle whenever it
exists.

This procedure was applied in fact to the map X that describes
the backward perfect foresight dynamics of equilibrium real balances.
The parameter a, was made to vary between 2 and 16 by steps of 0.05.

2

For each such value of a, on the horizontal axis, the corresponding
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map X was iterated 300 times, the initial point being the critical
point of the map, which is in that case u* = 23/(a2 - 1). On the
vertical axis above a2‘ were plotted all the values of the iterated

equilibrium real balances 1 from t = 200 %o t = 300. With this

t
procedure, one may hope the figure to show clearly the weakly stable
cycles that do not have too long a period and that are attractive
enough. The experiment cannot of course discriminate between stable
cycles that have a long period, and erratic behaviour.

The result of the experiment is shown below in Figure 6, under the

specification o, = 0.5, 2%

1 =2 and 2¥ = 0.5. It shows indeed the

1 2

usual period doubling bifurcation pattern. One may note moreover that
cycles do emerge for values of the relative degrees of risk aversion
that do not seem implausible. Indeed, the limit value of the period
doubling bifurcations (the analogue of A% in Theorem 4.T) is about 8,
while recent estimates of the Arrow-Pratt measure of risk aversion -

34/

which are averages over a whole population - range about 6.4

5 Output and Anticipated (or Unanticipated) Real Interest Rates

We were concerned in the previous Sections with the existence and
stability of periodic competitive equilibria. We wish now to study the
following issue. Since there are movements of output (or equivalently
of the rate of participation of the labour force) and of prices along a
sequence of competitive equilibria, is there any systematic relationship
between the equilibrium levels of output and of the real rate of

interest? It will be shown that such a relation exists indeed in the
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present model, both in the short run and in the long run (i.e., along
periodic equilibria). Of course, since no interest is paid on money in
the model, fhis implies a relation between equilibrium output and
inflatin that goes simply in the opposite direction. It will be seen
moreover that high levels of output are associated to low real interest
rates (i.e., to high levels of inflation) whenever old traders have a
higher marginal propensity to consume leisure than young consumers.
Output and inflation are then "procyclical". Furthermore, it will be
shown that such an association holds for antidipated as well as
unanticipated movements of the real interest rate (or the rate of
inflation).

We first begin with long run, i.e., periodic, equilibria. Let us
assume that the economy satisfies assumptions (1.a), (1.v), (1.c), and
consider a periodic competitive equilibrium (pt) with period k. We
know from Proposition 2.3 that under Assumption (2.g), the sequence

verifies for all t

(5.1) 21(8,) + 2,(8, 1) = 0
M
(5.2) Moo g0, )
t
= =1
y . x = *
in which Gt pt/pt+1. Moreover one has 8 < et < B Z, (21) for

all +.
The above relations describe the evolution of the real interest
rates pt = et - 1 over the cycle. It is then straightforward to

deduce the corresponding evolution of equilibrium output. The sequence
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of real'equilibrium money stocks ut = M/pt satisfies 0 < ut

all t. At date 1%, the young trader's equilibrium consumption and

A
1 for

labour supply are then obtained by maximizing Ul(cl’lf - 21) under the

budget constraint [c, + (2§ = 21)] = 2% - y . In view of problem

1 1 t

(2%

(1.7), the outcome is 4

- ® _ ) i
ut) and 21(21 ut) By the same kind

¢1

of reasoning, the old trader's equilibrium consumption and labour supply
. * 3

are given by 02(23 + ut) and 22(22 + ut). Equilibrium output y, at

date t 1is therefore

= ¥ o *
Yo = 4008 - u) + 4,008+ u)
(5.3)

= * o *

cl(l1 ut) + ca(l2 + “t)
Let us define now for every 6 in the interval [5,5]
= * - *

(5.4) £(8) zl(zl z2(6)) + 22(22 + z2(6))

Then (5.2) and (5.3) imply immediately that there is a systematic
relationship, along a periodic equilibrium with perfect foresight,
between the equilibrium output level yt and et—l = pt-l/pt - or
equivalently the rate of inflation Pt/pt-l' It is indeed described by
iom= £(8 r }. One may remark that the function f depends on the real
characteristics of the economy and not on the level of the money stock
M. Moreover the relation between yt and et-l is independent of the
period k of the cycle.ééj

The natural question to ask then is whether a low real interest

rate (i.e., a high rate of inflation) is associated to a high level of

activity along a periodic competitive equilibrium with perfect foresight
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-~ or equivalently whether f is decreasing. To this effect, consider

an increase of © Since the function Zo is increasing, the o0ld

=11

consumer's "real income" at t, i.e., 2% + z_(6_ .), goes up while the

2 2° t-1

young consumer's "real income" 4¥ (6 ) goes down by the same

1 - Fe'Sgh
amount. If we assume the labour supply functions 21 to be
continuously differentiable, the overall consequence of this
"redistribution of income" among the two traders living at t will
depend upon the relative magnitudes of the marginal propensities to

supply labour - or to consume leisure - at both ages. This motivates

considering the following assumption

(5.1) The functions cT(aT) and lT(aT) are continously
differentiable. The good and leisure are noninferior commodities,
that is, 0 < c;(aT) <1 and -1 < 2%(at) < 0 for every
a. > 0, T =1,2. Furthermore, the marginal propensity to consume

leisure is higher for an old trader than for a young one, that is,

!Eé(az)l > |2i(a1)£6/for all a,, a, >0 such that

= 4% *
al + a2 21 + 22

It is then quite easy to see that f 1is a decreasing function.
If et-l goes up, the old trader living at t, being richer, supplies
less labour (consumes more leisure) while the young consumer, being
poorer, works more. But Assumption (5.i) makes the aggregate labour

supply, and thus output, to go down. Formally, we have by differen-

tiating (5.4)

£'(8) = zé(e)llé(lg b z2(9)) - Ar(e% - 22(9))1 <0
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To sum up, we have obtained

Proposition 5.1: Assume (1l.a), (1.b), (1l.c), and define for any

-1
¥*

0 in [9,9], in which 6 = g
£ = & L¥ . o + £ L¥ + o
(e) 1( 1 2(6)) 2( 2 2(6))

Then under Assumption (2.g), for any sequence of competitive
equilibria (p,) that has period X, equilibrium output y, and

are linked by ¥y, = £(9 ) for all t. Moreover,

g t t-1

-1 = Py /Py
under assumption (5.i), £ is continuously differentiable, and

£'(8) < 0.

The relationship that we just established between the equilibrium
output at date t and the real interest rate between dates t -1

and t, i.e., O - 1, is clearly a "long run" relationship. That is,

t-1
it obtains only when the economy has converged to a "steady state",
i.e., to a (stable) periodic equilibrium, and when learning has ceased
accordingly. It should be emphasized moreover, that the long run

relation yt = (0 ) does not represent a behavioural supply or demand

t-1
function, since it involves equilibrium variables over the cycle.

It is useful to have a brief look at the sort of relationship that
exists between equilibrium output and the real interest rate in the
short run, i.e., during the adjustment process of the economy toward
long run periodic equilibria. This will enable us in particular to

single out the role that "surprises" (forecasting errors) play in the

short run.
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Consider accordingly an arbitrary (aperiodic) sequence of

temporary equilibrium prices (pt). As before equilibrium real balances

are given by u, = M/pﬁ, while the sequence of equilibrium output y,

t

is given by (5.3), in which 0 < u_ < 2{. But equilibrium real balances

t
are not given by (5.2) this time, since we are considering an aperiodic
sequence along which traders are still learning. We mst use instead

the temporary equilibrium conditions (2.1), (2.2), or equivalently

(2.3). As a matter of fact, we may rewrite (2.3) for date t - 1 as

e
P P P
(5.5) m et L0l o aEody

u =
i b pi

in which the price pi that is expected for date t by the young

trader living at date t - 1 1is determined by

() Dy = By yseeesPy g y)

We see then that the equilibrium real bhalance ut at t 1is a function
of the real interest rate that was expected in equilibrium at the date
t - 1, or more precisely of ez_l = pt_l/p:, and of the forecasting

t t-1
— S - e
et-l = pt-llpt (one has equivalent ey Pt/pt)° Indeed, (5.5) can be

error actually made on this variable, i.e., of e, = 8 /ei_l, in which

rewritten with this notation
(5.7) W, =ez,(65 )

Here again, since the nominal interest rate paid on money is zero in the

model, there is an inverse relationship between the (expected) rate of
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inflation and the (expected) real rate of interest. In particular, a
high level of "unanticipated inflation" means that the real interest
rate et 1 is much lower than was expected, that is, it means a low

value of e Of course, perfect foresight corresponds to et =1 and
e e
thus to et-l = et-l (or by = pt).

Let us define the function F(6%,e) by

(5.8) F(6%,e) = 2, (2% - ez,(6%)) + £,(28 + ez, (6%))

the domain of definition of F Ybeing the set of pairs (ee,e) such
that © < 6° < z;l(zf/e) in order to ensure that 0 < ezz(ee) < 2{.
Examination of (5.3), (5.5) and (5.6) shows then immediately that along
a sequence of temporary equilibria, equilibrium output is linked to the
expected real interest rate and to the forecasting error made on this

variable by

0 P
- e t- . . t-1
Yy F(et-l’ o ) in which et-l = P and
t-1
(5.9)
¢ pt-l

t_l - w(pt—l, s e ,pt—T—l)

Two important facts are worth to be noticed. First, the
function F depends only on the real characteristics of the economy,
and not on the level of the money stock M. More importantly, it does
not depend on the particular trajectory that is éonsidered nor on the
learning process ¢ that the traders are usingcézj This relation F

would be in particular the same if traders employed a more sophisticated
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learning procedure than the one we considered here, for instance if the
expectation function (the agent's "model" of the econony ) was revised
accordingly to a prespecified rule that would take into account the
forecasting errors made in the past (see the Remark at the end of
Section 2). Second, when e = 1, the "short run" function F reduces
to the "long run" map f, since F(6,1) = £(6). Thus if we consider a
periodic equilibrium (pt) with perfect foresight (Assumption (2.g)),
then there are no forecasting errors along the sequence (et =1 and
ei_l = 6£_1 for all t), and (5.9) yields the long run relationship

Yy = £(6, .) ‘that we established previously (this finding comes

t-1
evidently from the fact that when there is perfect foresight, the money
equilibrium equation (2.3), and thus (5.5), reduces to (5.2)).

The final step of this investigation is to examine whether a low
value of 6:_1 (i.e. & high anticipated inflation) and/or a low value
for the error forecast ey (i.e., a large unanticipated inflation) is
associated to a large equilibrium output Yie It is indeed immediate to
verify that under Assumption (5.1), both anticipated and unanticipated
inflation yield a larger level of output, or equivalently, that F is a

decreasing function of each variable 6€ and e. Indeed, by

differentiation of (5.8)

]
i

ez} (6%) [24 (28 + ez,(6%)) - 21(84 - ez,(8%))] < 0

P!o= 5, (0%) (85008 + e2,(6%) - L2 (24 - ez (6°))] < 0

It may be noted incidentally that the ratio of the elasticities of
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equilibrium output with respect to o€ and e 1is equal to

okl

ee

e
eFé 22(6 )

e (a8
8 ze(e )

that is, to the elasticity of the function z,. It will be greater than
1 if and only if the "demand for real balances" -~ which is equal, by
virtue of (1.3), to z2(9e)/8e - is increasing at 6% (all that is
needed to establish this property is that F is differentiable, with
L # 0. There was no need of Assumption (5.i))»§§/

Finally, we should emphasize here again that the short run
relationship (5.9) between output and anticipated as well as
unanticipated real interest rates represents in no way any behavioural
demand or supply function, as it involves equilibrium magnitudes. In
the language of gconometrics, the short run or long run relations
between equilibrium output and expected or unexpected real interest

rates are reduced forms, not structural forms.

To sum up, we have obtained

Proposition 5.2: Assume (l.a), (1.b), (l.c) and define for any

positive (6%,e) satisfying B < 6® < zEl(lf/e),

F(6%,e) = 2, (4% - e2,(6%)) + 2,28 + ez,(6%))

Then for any sequence of temporary competitive equilibrium prices (pt),

equilibrium output Yy, is linked to anticipated and unanticipated real

= )

interest rates by s F(et 10 & l/ei 1),

13 . e -
in which 61 pt—l/pt
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e —
and et—l = pt-l/¢(pt-l""’pt—T-l)’ for all t. Moreover, under
Assumption (5.i), F is continously differentiable, and F'e < 0,

6
F' < o.
e

Remarks:
1. It has been shown incidentally in this Section that
equilibrium real balances ut along a sequence of temporary competitive

equilibria are positively related to the expected real interest rate

e

et-l

and to the forecasting error on this variable e, = et-l/e:—1; see
(5.7). The long run version of this relation (along periodic equilibria
with perfect foresight) is (5.2). The validity of the result does not
hinge on (5.i). In fact, it would hold in an exchange economy (without
production) in which traders are endowed.with the quantities 2{, 2; of
the good in each period of their lives.

2. The fact that equilibrium real balances at t depend only on

e
and on e, = 6

e
et—l t t—l/et-l

along a sequence of temporary equilibria,
as in (5.7), rests upon the specific structure of the model that we have
considered. If traders lived n ©periods, equilibrium real balances
at t would depend upon the expectations and on the forecasting errors
that the agents living at t made in all the previous periods of their
lives. There would be then a lag between equilibrium real balances (or
output) and expectations as well as forecasting errors, which would be
equal to the length n of the traders' lifetimes.

3. The long run and short run relationships f and F may of

course be expressed in equivalent ways, by implementing a consistent

change of variables. Let us transform the output variable y into
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Yy by 'y = h(y), in which h 1is continuously differentiable and

increasing (h' > 0). Let us define 6 = h(9), 6% = n(6%). The new

~

forecasting error variable e

h(e) 1is then related to 6 and 6° by

2=
n(d) = n 8L

3= h(e) =
s © 0 n1(6%)

We may then write

nlFm™(6%),n " e))]

F(6°%,e)

and it is easily seen that the partial derivatives of F with respect
to 6° and e have the same sign as the partial derivatives of F
with respect to 8¢ and e. With the new variables, perfect foresight

means e = h(1) - and thus 6% = 6 - and the long run relationship

becomes

~ o~ ~ o~

3; = £(8) = F(6,h(1))

-~ ~

One has in fact f = hofoh—l, and thus the derivatives of f and f
have the same sign.

The same sort of exercise may be done for the relation between
real balances and expected or unexpected real interest rates. The
reader may go through this change of variables when h 1is the
logarithmic function. In that case, the result resembles - if one
excepts the fact that our model is highly nonlinear =~ quite a few log-

linear macroeconomic models that have been so popular recently in the
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so-called '"New Classical" macroeconomic literature. The other important
differences are first that (the logarithm of) equilibrium output and
real balances - or their deviations from their "permanent" values, which
may be viewed as those that correspond to the Golden rule stationary
state 6 = 1 - depend not only on (the logarithm of) the "surprise"

e

=8 6 =
e = 8y 1/% = P
z-l = pt—l/pt; and second that these relationships cannot be

i/pt but also on the expected real interest rate

8

interpreted as supply or demand functions as they often are, apparently

mistakenly, since they involve equilibrium magnitudes.

6. Stabilizing Periodic Equilibria

The business cycles that were described in the preceding Sections
are purely endogenous, that is, they are not attributable to any
hypothetical exogenous "shocks" such as variations of the consumers'
tastes, of their endowments or of productivity, nor to changes of the
Government's policy - there are none. They are not due either to a lack
of information of the traders since learning has been completed along
periodic equilibria with perfect foresight. We wish to show now that
the Government is in fact able to stabilize completely business cycles
by choosing an appropriate countercyclical policy.

There are many ways through which the Government may hope to
influence economic activity: money transfers that are proportional to
the agente' money balances (interest payments), lurmp sum transfers
(taxes or subsidies), income taxes, purchases of goods, open market

operations, and so on. The subject matter is obviously too vast to be
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dealt with in depth within the limited scope of the present paper. We
shall focus attention accordingly on the simple and popular case in
which the Government pays a (publicly announced) nominal rate of
interest at each date on the money balances that old consumers hold. We
shall then find the analogue in our framework of a standard result: if
the monetary authority pegs the nominal rate of interest (or
equivalently the rate of growth of the nominal money supply) at some
arbitrary predetermined level, this policy will have no real effect on
the set of corresponding long run (periodic) equilibria - nor on the
long run "trade off" between equilibrium output (or real balances) and
real interest rates that we established in the preceding Section.
Moreover, if the traders believe in the neutrality of such a policy, it
will have no real effect either on the trajectories that the economy
follows during the adjustment process toward long run equilibria. It
will not change then in particular the stability or the unstability of a
particular periodic equilibrium. In this sense, permament changes of
the rate of growth of the money supply that are implemented through a
predetermined nominal interest payment are superneutral.ég/

The analysis will thus confirm the analogue in this context of the
"monetarist" claim, namely that any given cycle of the model is in fact
compatible with an arbitrary (average) rate of inflation. Although this
conclusion is correct, the fact that the foregoing policy of pegging the
nominal interest rate at some predetermiend level has no real effects is
entirely due to the feature that such a policy is purely passive. We

shall show that the monetary authority can in fact influence real events
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by adopting an active policy, e.g., a feedback rule that links the real
rate of growth of the money supply at some date to previously observed
economic variables. Note that such an active policy leaves in any case
the set of "potential" long run periodic equilibria with perfect
foresight invariant (in real terms). It is indeed the same as under
laisser faire, i.e., it is described by the set of all cycles of the map
¢.—9/ What such an active policy can at best achieve is thus to
"select" one particular cycle that would not have been reached under
laisser faire. We shall see indeed that there is a simple, moderately
countercyclical ("leaning against the wind") policy of that sort that
enables the monetary authority to stabilize completely the economy (to
peg the real rate of interest permenently at a level equal to O0), and
to control at the same time the nominal rate of growth of the money
supply (or equivalently, the rate of inflation) at some predetermined
level r*. Of course any change of r¥* alone will be here again
superneutral.ﬁlj The analysis will thus bring into the forefront a
phenomenon that appears general, namely that a change of the average
growth rate of the money supply yields consequences that may be very
different from those that result from the "transitory" part of the
policy, i.e., from the active countercyclical (or procyclical) feedback
rule that is implemented by the monetary authority. It should be noted
also that a successful stabilization policy like the above affects not
only the variances of real equilibrium magnitudes but also their means

(their average over a cycle) since the model is nonlinear, in contrast

to traditional macroeconomic models that use the "natural rate" hypothesis.
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Before going into the details of the study, we mist look at an
agent's behaviour when interest is paid on money. Let us consider

accordingly a young trader at a time in which the price of the good is

p and let pe and re = xe ~ 1 be the price of the good and the

transfer (nominal interest rate) he anticipates for the next date. The
agent's problem is then to maximize his intertemporal utility function

% _ ® _
Ul(cl’ Zl 21) + U2(c2, 22 22) subject to the current and expected

budget constraints

It is then clear that under Assumptions (l.a), (1.b), his current and
future excess demands for the good are given by zl(e) and 22(6)
respectively, in which 6 = pxe/pe (again 6 - 1 1is the expected real
interest rate), while his demand for money is md(p,pe/xe).

We proceed now to the determination of the dynamical system that
governs the evolution of equilibrium prices and interest rates. First
note that if xt = (1 + rt) describes the transfer actually made at

date t and if Mt-l is the pretransfer money stock at that date, then

the money supply at t is M The equilibrium conditions at

t = XM
date t for good and money are then described by

M
+-L=0

e e
(6.1) zl(Ptxt+1/pt+1) B
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d e e
(6.2) m(pysPyyy /X)) = My

in which pi+1 and xe stand for the price and the transfer that the

++1

young trader living at t anticipates for the next date. By Walras's

Law, the two equations are equivalent and may be written in the follow-

ing from
Pe p x5
6. t+1 LR SO
(6.3) (), () =
Xg+1 Py+

These three equations are the analogues of (2.1), (2.2) and (2.3) for
the no interest payment case.

To be complete, the system mst inyolve the specification of the
dynamical policy that is implemented by the monetary authority, i.e. of
the way in which the transfer at date + + 1, or xt+1 =1 + rt+1,
depends on the price at that date Py 41 and of the economic data that
were observed by the monetary authority at the previous dates. The
system must specify in addition the traders' forecasts about prices and

e

interest rates -~ in fact about the ratio Py - as a function of

/x§+1
current and past prices and rates of interest. One my note that the
resulting expectation function will depend in a crucial way on whatever
information the traders have concerning the particular policy that has
been chosen by the monetary authority.

We shall consider exclusively in the sequel policies that aim at

pegging in the long run the nominal interest rate at some predetermined

level r¥*, and may be some additional "real" variables. It is then
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useful as a first step to characterize the set of all long run periodic
equilibria with perfect foresight that may arise‘in the economy when the
interest rate is r*, and this independently of any further specifi-
cation of the government's policy or of the learning processes that the
consumers employ. As we are going to see, this set coincides - as far
as real equilibrium magnitudes are concerned - with the set of periodic
equilibria with perfect foresight that arises on the no interest payment
case, i.e., under laisser faire. The only difference is that prices
grow now "on average" at the rate r¥* along the cycles.

The argument is indeed trivial. If the interest rate is pegged at
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